Synchronization and Extreme Fluctuations on Networks, and Application to Scalable **Parallel Discrete-Event Simulations**

NSF DMR-0113049

PIs: G. Korniss (Rensselaer), M.A. Novotny (MSState U)

Postdocs: A. Kolakowska (MSState U)

Graduate students: H. Guclu, B. Kozma (Rensselaer); P.S. Verma, T. Dubreus (MSState U)

Undergraduate students: K. Barbieri, B. McAdam, J. Marsh, J. Yasi (Rensselaer); S. Wheeler, J. Barksdale, R. Smith (MSState U)

Collaborators: Z. Toroczkai, M.B. Hastings (Los Alamos); P.A. Rikvold (Florida State Univ.); L.N. Shchur (Landau Inst.); T. Caraco (SUNY Albany); B. Lubachevsky; Z. Rácz (Eötvös Univ.); T. Borland (Questar/New Vision)

Funded by NSF, Research Corporation, DOE (LANL and NERSC)

Synchronization in Coupled Multi-Component Systems

Collective dynamics on the network

Examples:

- •Internet (packet traffic/flux)
- Load-balancing schemes (job allocation among processors)
- •Electric power grid (power transmission and phase synchronization)
- •High-performance or grid-computing networks (progress of the processors in distributed simulations)

Fluctuations of the "load" in the network

- Average size of the fluctuations
- Typical size of the largest fluctuations;
 failures/delays are often triggered by extreme events

Critical phenomena in small-world networks

- Watts & Strogatz (1998):
- "... enhanced signal-propagation speed, computational power, and synchronizability".

- Monasson (1999): diffusion on SW networks
- ■Barrat&Weight (2000), Gitterman (2000), Kim et al. (2001), Herrero (2002), Jeong et al. (2003), Novotny and Wheeler (2004): Ising model on SW networks
- •Hong et al. (2002): XY-model and Kuramoto oscillators on SW networks.
- •these systems typically exhibit (strict or anomalous) mean-field-like phase transitions
- •Hastings (2003): general criterion for mean-field scaling

Synchronization in Parallel Discrete-Event Simulations (PDES)

Parallelization for asynchronous dynamics of continuum-time processes

Examples:

- Cellular communication networks (call arrivals)
- Magnetization dynamics in condensed matter (Ising model: spin flips with Glauber dynamic)
- Spatial epidemic models, contact process (infections)

Paradoxical task:

 (algorithmically) parallelize (physically) non-parallel dynamics

Must use local simulated times $\{h_i\}$ on each processor and a synchronization scheme to preserved causality

Synchronization landscape (virtual time horizon)

progress of the simulation

$$w^{2}(t) = \frac{1}{N} \sum_{i=1}^{N} [h_{i}(t) - \overline{h}(t)]^{2}$$

width (measure of de-synchronization)

"rough" landscape

$$\xi \sim N$$
 correlation length

$$w \sim N^{\alpha}$$
roughness exponent

G. K., Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, *PRL* (2000)

Small-World Synchronized Computing Networks

regular network

progress of the individual processors

- •efficient exchange of information
- •no global intervention
- •provides scalable scheme for massively parallel computing

utilization trade-off/scalable data management

fully scalable high-performance or grid-computing networks

G. K., Novotny, Guclu, Toroczkai, Rikvold, Science (2003)

Kirkpatrick, Science (2003)

roughness

utilization = fraction of non-idling PEs

speedup = utilization $\times N_{PE}$

local synchronization/communication rules in PDES ("microscopic dynamics")

effective equation of motion for the virtual time horizon

$$\partial_t h_i = (h_{i+1} + h_{i-1} - 2h_i) - \sum_{j=1}^N J_{ij}(h_i - h_j) + \dots + \eta_i(t)$$

$$\sum_j J_{ij} = o(1)$$
 finite average degree

Gaussian noise

Impurity-averaged perturbation theory

B. Kozma, M.B. Hastings, and G.K, *PRL* (2004)

$$\partial_t h_i = (h_{i+1} + h_{i-1} - 2h_i) - \sum_i (h_i - \overline{h}) + \eta_i(t)$$

SW network induces effective relaxation to the mean

finite correlation length ξ and **finite width** w in the $N \rightarrow \infty$ limit

Synchronizability and extreme fluctuations in

(a)

coupled multi-component systems with "local" relaxation and short-tailed noise (e.g., PDES synchronization)

regular 1d (ring)

 $\langle \Delta_{\rm max} \rangle = \langle h_{\rm max} - \overline{h} \rangle$

$$w \sim N^{\alpha}$$
 $\langle \Delta_{\text{max}} \rangle \sim N^{\alpha}$

Raychaudhuri et al., *PRL* (2001) G.K. et al. *ACM SAC02* (2002) $W \sim const.$

$$\langle \Delta_{\max} \rangle \sim w \ln(N)$$

H. Guclu, and G.K., *PRE(R)* (2004)

Dubreus, Novotny,

Random Walker on

Kolakowska (2004) (Small – World) Evolving Surfaces

- Random walker moves uphill on nonequilibrium surface
- PDES model (with and without Small-World bonds)

Walker relation to global maximum

Results:

SW connections change the probability distribution

No SW connections: probability distribution is power law

See Poster

Freeze-and-Shift Algorithm

Decouple communications and calculations

- use treads on each node
- each PE has many nodes & threads
- Freeze boundaries between PEs
- Shift data between PEs

- efficiency near 1
- use for PDES (PDEs? grid computing?)

Shchur and Novotny, PRE (2004)

Periodically-driven spatially-extended bistable systems

\mathcal{T} : metastable lifetime

 $t_{1/2}$: half-period of the oscillating field

$$Q = \frac{1}{2t_{1/2}} \oint m(t)dt$$

dynamic phase transition

- Strong finite-size effects
- No first-order dyn. phase trans.
- No tri-critical point
- SR does not survive as $L \rightarrow \infty$
- Estimates for cross-overs

G. K., P.A. Rikvold, and M.A. Novotny, *PRE* (2002)

Ecological Invasion with Pre-emptive Competition

- two plant species compete for shared and limited resources
- initially only resident species is present
- invader species (better competitor) is introduced stochastically with a small rate

nucleation and growth

Avrami's Law

G.K. and T. Caraco (2004)

Modeling Disease Outbreaks in Realistic Urban Social Networks

S. Eubank, H. Guclu, V.S. Anil Kumar, M.V. Marathe, A. Srinivasan, Z.

Toroczkai, N. Wang, *Nature* (2004)

- •early detection and targeted vaccination,
- •stay home ("early withdrawal")

See Poster

Summary

- SW links can facilitate synchronization of parallel computing networks with many nodes
- Relevant node-to-node process is *relaxation* in the presence of *short-tailed noise* → weak *logarithmic divergence* for the typical size of the *largest fluctuations*
- Applications: dynamic phenomena in magnetic, ecological, and epidemics models

www.rpi.edu/~korniss

- H. Guclu, and G.K., *Phys. Rev. E* **69**, (R) (2004).
- B. Kozma, M.B. Hastings, and G.K, *Phys. Rev. Lett.* **92**, 108701 (2004).
- G. K., M.A. Novotny, H. Guclu, Z. Toroczkai, and P.A. Rikvold, *Science* **299**, 677 (2003).
- G. K., Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, *Phys. Rev. Lett.* **84**, 1351 (2000).