
Figure 7: Unstructured spacetime mesh showing adap-
tive refinement for crack-tip scattering problem. The 
trajectories of the main shock front, Rayleigh waves, as 
well as scattered dilatational snd shear waves are evident.
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Figure 2: Shock wave propagation in a 
star-shaped rocket grain

Figure 3: Discontinuous Galerkin
finite element basis functions

 Tent Pitcher:  Constructing and Solving Adaptive Spacetime Grids

SDG Finite Element Model

Hyperbolic systems play an important role 
in continuum models of materials systems. 
Examples include:
 •  shock wave propagation in solids
 •  evolution equations for state variables in 
     inelastic constitutive models (porosity, 
     dislocation density, etc.)
 •  Hamilton-Jacobi level set models 
     for interface kinetics
Hyperbolic systems are among the most dif-
ficult problems for numerical simulation. 

Their solutions 
exhibit shocks (or 
discontinuities) 
that are difficult 
to capture on 
numerical grids.  
Available nu-
merical methods 
are imperfect, 
and the search 

for better methods is an active area of 
research.  
 We are developing a new analysis tech-
nique, spacetime discontinuous Galerkin 
(SDG) finite element methods, to address 
this class of problems.  SDG methods offer a 
number of desirable features:
 •  exact balance on every element
 •  no global oscillations due to shocks
 •  O(N) complexity on causal grids
 •  supports nonconforming, hp-adaptive 
    spacetime meshes
 •  rich parallel structure, modest communi-
     cation requirements
 •  track moving boundaries and interfaces
 This poster reports progress in formulat-
ing and implementing new SDG methods 
for elastodynamics and describes on-going 
work to apply them in multiscale modeling 

of materials microstructures.

The distinguishing features of the SDG 
finite element method are:
 •  inter-element discontinuous basis
 •  direct spacetime model (in lieu of time-
    marching in semi-discrete methods)
These lead to several advantages when the 
method is implemented on causal grids.

Hyperbolic PDEs and Conservation
Laws in Materials Modeling

Our solution relies on a novel spacetime 
meshing algorithm called “Tent Pitcher”.  
Given a space mesh M and a target time T, 
Tent Pitcher constructs an unstructured 
mesh on the spacetime domain M x [0,T] 
using a local advancing front method.  The 
advancing front is a terrain 
in spacetime, initially the 
space mesh M at time t = 0.  
Tent Pitcher repeatedly 
chooses a vertex of the 
front, advances that vertex 
forward in time to create a 
“tent”, solves the PDE within that tent, and 
finally updates the front.

 

The height of each tent is limited in two 
ways.  The causality constraint limits the 
slope of each facet to be less than the in-
verse of the local wave speed.  This constraint 
ensures that the solution within each tent 
depends only on the solu-
tions within previous tents.  
A more technical progress 
constraint ensures that our 
algorithm makes significant 
forward progress at every 
iteration.

We also refine or coarsen the front in 
response to a posteriori error estimates 
returned by our spacetime DG solver.  If the 
error within a patch is too large, we refine 
the front using newest-vertex refinement.  

By refining the front, we reduce the size of 
future spacetime elements.  If the error 
within a patch is below some threshold, we 
attempt to undo earlier refinements.  Adap-
tivity allows us to track shocks and other 
subtle features of the evolving solution.  
Our method creates non-conforming spa-
cetime meshes; fortunately, these are sup-
ported by our spacetime DG methods.

Our technique has three key advantages: 
 •  Adaptive: The size and duration of each 
spacetime element depends only on the 
local spatial geometry and the complexity 
of the local solution. 
 •  Fast: We solve a small system of equa-
tions for each tent, instead of one huge 
system for each time step, so our total solu-
tion time is only linear in the number of 
spacetime elements.

 • Flexible: Tents with no causal relationship 
can be pitched and solved in any order, or 
in parallel (cf. parallel solution method)

Figure 4: Tent Pitcher
solution strategy

Pitch
tent

Update
front

Solve
patch

Figure 5:  Pitching tents in spacetime
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Figure 6:  Causality constraint: 
facet separates domains of 
influence and dependence
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Figure 8: Newest-vertex refinement strategy

Figure 1: Martensite–Austenite 
phase boundary  (Credit: Thomas Shield, 

University of Minnesota)



Fig. 9  Sequence of images showing scattering of a 
shock wave by a crack tip.  The shock front approaches 
the crack from the top edge and scatters from the crack 

tip at bottom center.  The shear and pressure compo-
nents of the scattered  waves are clearly visible.  The 

height field depicts velocity magnitude; color depicts 
strain energy density on a logarithmic scale.
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Parallel Implementation:  Finite Element Framework and Charm++

Pixel-Exact Visualization of Spacetime Data Sets

We will continue to develop the spacetime 
discontinuous Galerkin technology, while 
increasing our emphasis on its application 
to a variety of materials systems, including

 •  Austenite-martensite transitions in 
    shocked shape memory alloys
 •  Dewetting of inclusions in composites
 •  Solutions of the time-dependent 
    Schroedinger equation in TD-DFT.
 •  New atomistic–continuum coupling 
    strategies

Further development of the SDG technology 
will include:

 •  Simultaneous parallel/adaptive solutions
 •  Interface tracking (inclined tent poles)
 •  Extend to 3 space dimensions x time

Special post-processing and rendering 
techniques are needed to visualize data 
sets computed on unstructured space-
time grids, such as the ones displayed in 
Fig.  7.  We take the trace of the data on a 
series of constant-time planes to produce 
animations and still images, such as the 
ones shown in Fig. 9.
 Traditionally, visualizations are pro-
duced using standard polygon rendering 
algorithms that typically drawing one 
planar polygon per element, with linearly 
interpolated color.  These approximate 
rendering methods can obscure the true 
quality of solutions computed with a 
high-order polynomial bases.  In contrast, 
we wish to produce pixel-exact renderings  
at interactive rates.

The SDG method is easy to parallelize when it 
is implemented on patchwise causal meshes, 
such as those generated by Tent Pitcher, be-
cause the solution on each new patch de-
pends only on its immediate neighbors along 
its inflow boundary.  The amount of data per 
patch is small, making it inexpensive to com-
municate patch data between processors. 
 Our parallel implementation is based on 
the Finite Element Framework, a software de-
velopment environment that handles parallel 
details with minimal effort by the applica-
tions programmer.  The framework builds on 
top of AMPI or native MPI and allows access 
to Charm++ (http://charm.cs.uiuc.edu).

To achieve this end, we take advantage of 
the modern programmable graphics pro-
cessing units (GPUs); these  heavily pipe-
lined devices contain up to 64 parallel 
pixel units on a single card.   We use this 
power to evaluate solution polynomials 
and to calculate surface normals and 
lighting, all on a per-pixel basis.  This leads 
to high-accuracy visualizations (see Fig. 
12), and allows us to distinguish solution 
artifacts from rendering artifacts.  
 Even with very tight error bounds, our 
SDG solutions can generate slightly differ-
ent values in neighboring elements due 
to floating point imprecision.  This can 
lead to pixel drop-outs that overstate the 
discontinuity.  We overdraw all polygon 
edges to eliminate the pixel drop-outs 
while retaining legitimate solution dis-
continuities (Fig. 13).

 The framework partitions the space mesh 
into chunks that run in parallel, each with 
copies of Tent Pitcher and the SDG physics 
code, so each chunk can advance its front in 
spacetime independently.

 

 The framework assigns each chunk to a vir-
tual processor (VP), with multiple VPs assigned 
to each real processor.  Charm++ provides 
dynamic load balancing by migrating chunks 
between real processors as needed.  We obtain 
good processor utilization (95% or better) and 
nearly linear scaling in the patch solution rate.
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Fig. 10  Parallel software architecture
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Fig. 12  Comparison of per-vertex rendering (left)
with pixel-exact rendering (right)

Fig. 13  Comparison of rendering without (left)
and with (right) anti-aliasing along edges

Continuing Work

Fig. 14  Scattering around 
circular inclusions 

Fig. 11  Domain decomposition of space mesh (left), linear
scaling of solution rate with number of processors (right),
and processor utilization for a 16-processor run (bottom).
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