
Simulating extended time and length scales using parallel
kinetic Monte Carlo and accelerated dynamics

Jacques G. Amar, University of Toledo

• Kinetic Monte Carlo (KMC) is an extremely efficient method to carry out
dynamical simulations when relevant thermally-activated atomic-scale
processes are known.

Used to model a variety of dynamical processes from catalysis to thin-film growth

• Temperature-accelerated dynamics (TAD - Sorensen & Voter, 2000) may be
used to carry out realistic simulations even when relevant atomic-scale
processes are extremely complicated and are not known.

GOAL: to extend both of these techniques in order to carry out realistic
simulations over larger system-sizes, longer time scales

*In collaboration with Yunsic Shim
Supported by NSF DMR-0219328

Parallel Kinetic Monte Carlo

• While standard KMC is extremely efficient it is inherently a

 serial algorithm! No matter how large the system, at every step only

 one event can be simulated!

• In contrast, Nature is inherently parallel!

• We would like to use KMC to carry out simulations of thin-film

 growth over longer time and length scales

 How to “parallelize” the KMC algorithm in order to

 simulate larger system-sizes, longer time scales?

Temperature Accelerated Dynamics (TAD)

• KMC simulations are limited by requirement that complete catalog of

 all relevant processes and their rate constants must be specified. However,

 often all relevant transition mechanisms are not known.

• TAD allows realistic simulations of low temperature processes over

 timescales of seconds and even hours

• Computational work for TAD scales as N3 where N = # of atoms, so can only
be applied to extremely small systems (a few hundred atoms)

 How to “parallelize” the TAD algorithm in order to

 simulate larger system-sizes?

Parallel KMC - Domain Decomposition

• Domain decomposition is a natural approach since intuitively
one expects that widely separated regions may evolve
independently “in parallel”

Problems

• In parallel KMC, time evolves at different rates in different

 regions!

• How to deal with time synchronization?

• How to deal with conflicts between neighboring processors?

1 2 3 4

Only update processors whose next event times correspond to
local minima in time horizon (Chang, 1979; Lubachevsky, 1985)

Advantages: works for Metropolis Monte Carlo since
acceptance probability depends on local configuration but event-
times do not.

t3Time Horizon

P1 P2 P3 P4 P5 P6

t1
t2

t4

t5

t6

t = 0

Disadvantages: does not work for kinetic Monte Carlo since
event-times depend on local configuration. Fast events can
“propagate” from processor to processor and lead to rollbacks.

Parallel Discrete Event Simulation (PDES)
Conservative Algorithm

Three approaches to parallel KMC

Rigorous Algorithms

• Conservative asynchronous algorithm
Lubachevsky (1988), Korniss et al (1999), Shim & Amar (2004)

• Synchronous relaxation algorithm
Lubachevsky & Weiss (2001), Shim & Amar (2004)

Semi-rigorous Algorithm

• Synchronous sublattice algorithm

 Shim & Amar (2004)

Thin-film growth models studied

“Fractal model”
Deposition rate F per site per unit time

Monomer hopping rate D

Irreversible sticking/attachment (i =1)

“Edge-diffusion model”
Same as above with edge-diffusion

(relaxation) of singly-bonded cluster atoms

“Reversible attachment model”
Detachment of singly and multiply bonded atoms

(bond-counting model)

D/F = 107

Methods of domain decomposition (2D)

Square decomposition

 (8 nbors)

Strip decomposition

 (2 nbors)

Synchronous relaxation (SR) algorithm
 (Lubachevsky & Weiss, 2001)

• All processors ‘in-synch’ at beginning & end

 of each cycle

• Iterative relaxation - at each iteration

 processors use boundary info. from

 previous iteration

• Relaxation complete when current iteration

 identical to previous iteration for all processors

2 processors

1 2

Bdy
event

t = 0

t = T

t11

t12
t22

t23

t21

P1 P2

Disadvantages:

• Complex: requires ‘keeping list’ of all events, random numbers

 used in each iteration

• Algorithm does not scale: faster than CA algorithm but still slow due to

 global synchronization and requirement of multiple iterations per cycle

One Cycle

Average calc. time per cycle T for parallel simulation may be written:

tav (Np) = Niter < nmax > (t1p /nav) + tcom

where: < nmax >/nav ~ T-1/2 log(Np)2/3 and Niter ~ T log(Np)α

 tcom ~ (a + bT) log(Np)

In limit of zero communication time fluctuations still play a role:

Maximum PE PEmax = (1/ Niter) (nav/ < nmax >) ~ 1/log(Np)

Parallel efficiency (PE) of SR algorithm

€

PE = t1p / tav =
1

Niter(tcom / t1p+ < nmax > /nav)

Optimize PE by
varying cycle
length T
(feedback)

Parallel Efficiency of SR algorithm

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

T = 1/D (256 x 256)
T = 1/D (256 x 1k)
E

opt
 (256 x 1k)

N
p

Pa
ra

lle
l e

ff
ic

ie
nc

y

Fractal model: D/F = 105

Ideal: n
opt

 = 2 (256 x 1k)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

T = 1/D (256 x 256)
T = 1/D (256 x 1k)
E

opt
 (256 x 1k)

Edge diffusion model: D/F = 105

N
p

Pa
ra

lle
l e

ff
ic

ie
nc

y

Ideal: n
opt

 = 2 (256 x 1k)

 Fractal model Edge-diffusion model

---- PEideal = 1/[1 + 0.6 ln(Np)1.1]

Synchronous sublattice (SL) algorithm
 (Shim & Amar, 2004)

• At beginning of each synchronous cycle one
subregion (A,B,C, or D) randomly selected. All
processors update sites in selected sublattice only
=> eliminates conflicts between PE’s.

• Sublattice event in each processor selected as in
usual KMC. At end of synchronous cycle
processors communicate changes to neighboring
processors.

2D (square)
decomposition
(2 send/receives per cycle)

1D (strip) decomposition
(1 send/receive per cycle)

Advantages:

• No global communication required

• Many events per cycle => reduced

 communication overhead due to latency

Disadvantages:

• Not rigorous, PE still somewhat reduced due to fluctuations

Synchronous sublattice algorithm
(Shim & Amar, 2004)

4-processors

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

• Each processor sets its time t = 0 at beginning of cycle,

 then carries out KMC sublattice events (time increment

 Δti = -ln(r)/Ri) until time of next event exceeds time

 interval T. Processors then communicate changes as

 necessary to neighboring processors.

0

T
t2

t1

t3

2 events

• Maximum time interval T determined by maximum

 possible single-event rate in KMC simulation.

 For simple model of deposition on a square lattice with

 deposition rate F per site and monomer hopping rate D,

 T = 1/D

• Many possible events per cycle!

X

Comparison with serial results
(Fractal model D/F = 105, L = 256)

1D strip decomposition

System size 256 x 256

Processor size Nx x 256

Np = 4 (Nx = 64)

Np = 8 (Nx = 32)

Np = 16 (Nx = 16)

Nx = 64 Ny = 1024 Np= 16

512 by 512 portion of 1k by 1k system

Reversible growth model
T = 300 K, D/F = 105, E1 = 0.1 eV, and Eb = 0.07 eV

128

Average time per cycle for parallel simulation may be written:

tav = t1p + tcom + <Δ(τ)> (t1p/nav)

where <Δ(τ)> is (average) delay per cycle due to fluctuations

in number of events in neighboring processors.

Parallel efficiency (PE = t1p /tav) may be written:

PE = [1 + (tcom / t1p) + <Δ(τ)>/nav] -1

In limit of no communication time fluctuations still play important role:

Ideal PE PEideal = [1 + <Δ(τ)>/nav] -1

where <Δ(τ)>/nav ~ 1/ nav
1/2

Parallel efficiency (PE) of SL algorithm

P2

Fluctuations

n2

P1

n1

Δ

Results for <Δ(τ)>/nav
Fractal model

 D/F dependence (Np = 4) Np dependence (D/F = 105)

0.1

1

103 104 105 106 107

<Δ(τ)>/n
av

<Δ
S
(τ)>/n

av

Fl
uc

tu
at

io
ns

D/F

Slope = 1/3

Fractal model: N
p
 = 4

N
x
 = 256 N

y
 = 1024

 <Δ(τ)>/nav ~ (D/F)1/3 <Δ(τ)>/nav saturates for large Np

0

0.2

0.4

0.6

0.8

1

103 104 105 106 107

Square sub. (N=512)

Max. p. e. (square)
Strip sub. (N

x
 = 256 N

y
 = 1k)

Max. p. e. (strip)
Pa

ra
lle

l e
ff

ic
ie

nc
y

D/F

Edge diffusion model: N
p
 = 4

Edge-diffusion Model

PEmax

Parallel efficiency as function of D/F (Np = 4)

0

0.2

0.4

0.6

0.8

1

103 104 105 106 107

Square sub. (N=512)

Max. p. e. (square)
Strip sub. (N

x
 = 256 N

y
 = 1k)

Max. p. e. (strip)

Pa
ra

lle
l e

ff
ic

ie
nc

y

D/F

Fractal model: N
p
 = 4

Fractal Model

PEmax

PEmax = 1/[1 + 0.2 (D/F)1/3/(NxNy)1/2]

Parallel efficiency as function of Np
(D/F = 105)

0

0.2

0.4

0.6

0.8

1

100 101 102 103

N
p

Pa
ra

lle
l e

ff
ic

ie
nc

y
fractal (256 x 1k): OSC

Edge (256 x 256)

fractal (256 x 1k)
fractal (256 x 256): OSC

Ideal p.e. (fractal)

Ideal p.e. (edge)
N

y
 = 1k

N
y
 = 256

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

Pa
ra

lle
l e

ff
ic

ie
nc

y

N
p

SL

Syncr. Relax.

Ideal p. e.

Ideal p. e.

Comparison of SR and SL algorithms
Fractal model, D/F =105

Nx = 256 Ny = 1024

Summary
• We have studied 3 different algorithms for parallel KMC:
conservative asynchronous (CA), synch. relaxation (SR), synch. sublattice (SL)

• CA algorithm not efficient due to rejection of bdy events

• SL algorithm significantly more efficient than SR algorithm

 SR algorithm: PE ~ 1/log(Np)β where β ≥ 1

 SL algorithm: PE independent of Np !

• For all algorithms, communication time, latency, fluctuations play
 significant role

• For more complex models, we expect that parallel efficiency
 of SR and SL algorithms will be significantly increased

Global synch.

Local synch.

Future work
• Extend SL algorithm to simulations with realistic geometry in

 order to carry out pKMC simulations of Cu epitaxial growth

=> properly include fast processes such as edge-diffusion

• Apply SR and SL algorithms to parallel TAD simulations of
 Cu/Cu(100) growth at low T (collaboration with Art Voter)
 => Vacancy formation and mound regularization

 in low temperature metal epitaxial growth

• Develop hybrid algorithm combining SR + SL algorithms

• Develop local SR algorithm

• Implement SL and SR algorithms on shared memory machines

