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•  Kinetic Monte Carlo (KMC) is an extremely efficient method to carry out
dynamical simulations when relevant thermally-activated atomic-scale
processes are known.

Used to model a variety of dynamical processes from catalysis to thin-film growth

•  Temperature-accelerated dynamics (TAD - Sorensen & Voter, 2000) may be
used to carry out realistic simulations even when relevant atomic-scale
processes are extremely complicated and are not known.

GOAL: to extend both of these techniques in order to carry out realistic
simulations over larger system-sizes, longer time scales
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Parallel Kinetic Monte Carlo

•  While standard KMC is extremely efficient it is inherently a

    serial algorithm!   No matter how large the system, at every step only

       one event  can be simulated!

•  In contrast, Nature is inherently parallel!

•  We would like to use KMC to carry out simulations of thin-film

     growth over longer time and length scales

   How to “parallelize” the KMC algorithm in order to

   simulate larger system-sizes, longer time scales?



Temperature Accelerated Dynamics (TAD)

•  KMC simulations are limited by requirement that complete catalog of

   all relevant processes and their rate constants must be specified.   However,

   often all relevant transition mechanisms are not known.

•  TAD  allows realistic simulations of low temperature processes over

    timescales of seconds and even hours

•  Computational work for TAD scales as N3 where N = # of atoms, so can only
be applied to extremely small systems (a few hundred atoms)

   How to “parallelize” the TAD algorithm in order to

   simulate larger system-sizes?



Parallel KMC - Domain Decomposition

•  Domain decomposition is a natural approach since intuitively
one expects that widely separated regions may evolve
independently “in parallel”

Problems

•  In parallel KMC, time evolves at different rates in different

   regions!

•  How to deal with time synchronization?

•  How to deal with conflicts between neighboring processors?
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Only update processors whose next event times correspond to
local minima in time horizon (Chang, 1979; Lubachevsky, 1985)

Advantages:  works for Metropolis Monte Carlo since
acceptance probability depends on local configuration but event-
times do not.
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Disadvantages:  does not work for kinetic Monte Carlo since
event-times depend on local configuration.  Fast events can
“propagate” from processor to processor and lead to rollbacks.

Parallel Discrete Event Simulation (PDES)
Conservative Algorithm



Three approaches to parallel KMC

Rigorous Algorithms

• Conservative asynchronous algorithm
Lubachevsky (1988), Korniss et al (1999), Shim & Amar (2004)

• Synchronous relaxation algorithm
Lubachevsky & Weiss (2001), Shim & Amar (2004)

Semi-rigorous Algorithm

•  Synchronous sublattice algorithm

    Shim & Amar (2004)



Thin-film growth models studied

“Fractal model”
Deposition rate F per site per unit time

Monomer hopping rate D

Irreversible sticking/attachment (i =1)

“Edge-diffusion model”
Same as above with edge-diffusion

(relaxation) of singly-bonded cluster atoms

“Reversible attachment model”
Detachment of singly and multiply bonded atoms

(bond-counting model)

D/F = 107



Methods of domain decomposition (2D)

Square decomposition

          (8 nbors)

Strip decomposition

          (2 nbors)



Synchronous relaxation (SR) algorithm
 (Lubachevsky & Weiss, 2001)

•  All processors ‘in-synch’ at beginning & end

   of each cycle

•  Iterative relaxation - at each iteration

   processors use  boundary info. from

    previous iteration

•  Relaxation complete when current iteration

    identical to previous iteration for all processors
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Disadvantages:

•  Complex:  requires ‘keeping list’ of all events, random numbers

    used in each iteration

•  Algorithm does not scale: faster than CA algorithm but still slow due to

   global synchronization and requirement of multiple iterations per cycle

One Cycle



Average calc. time per cycle T for parallel simulation may be written:

tav (Np) = Niter < nmax > (t1p /nav ) + tcom

where: < nmax >/nav  ~ T-1/2 log(Np)2/3  and Niter ~ T log(Np)α

 tcom ~ (a + bT) log(Np)

    

In limit of zero communication time fluctuations still play a role:

Maximum PE           PEmax = (1/ Niter ) (nav/ < nmax >) ~ 1/log(Np)

Parallel efficiency (PE) of SR algorithm

€ 

PE = t1p / tav =
1

Niter(tcom / t1p+ < nmax > /nav )

Optimize PE by
varying cycle
length T
(feedback)



Parallel Efficiency of SR algorithm
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----    PEideal = 1/[1 + 0.6 ln(Np)1.1]



Synchronous sublattice (SL) algorithm
 (Shim & Amar, 2004)

•  At beginning of each synchronous cycle one
subregion (A,B,C, or D) randomly selected.  All
processors update sites in selected sublattice only
=>    eliminates conflicts between PE’s.

•  Sublattice event in each processor selected as in
usual KMC. At end of synchronous cycle
processors communicate changes to neighboring
processors.

2D (square)
decomposition
(2 send/receives per cycle)

1D (strip) decomposition
(1 send/receive per cycle)

Advantages:

•  No global communication required

•  Many events per cycle => reduced

   communication overhead due to latency

Disadvantages:

•  Not rigorous, PE still somewhat reduced due to fluctuations



Synchronous sublattice algorithm
(Shim & Amar, 2004)
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•  Each processor sets its time t = 0 at beginning of cycle,

   then carries out KMC sublattice events (time increment

   Δti = -ln(r)/Ri) until time of next event exceeds time

   interval T.  Processors then communicate changes as

   necessary to neighboring processors.
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•  Maximum time interval T determined by maximum

   possible single-event rate in KMC simulation.

   For simple model of deposition on a square lattice with

    deposition rate F per site and monomer hopping rate D,

   T = 1/D

•  Many possible events per cycle!

X



Comparison with serial results
(Fractal model D/F = 105, L = 256)

1D strip decomposition

System size 256 x 256

Processor size Nx x 256

Np = 4    (Nx = 64)

Np = 8    (Nx = 32)

Np = 16  (Nx = 16)



Nx = 64   Ny = 1024  Np= 16

512 by 512 portion of 1k by 1k system

Reversible growth model
T = 300 K, D/F = 105, E1 = 0.1 eV, and Eb = 0.07 eV

128



Average time per cycle for parallel simulation may be written:

tav = t1p + tcom + <Δ(τ)> (t1p/nav)

where <Δ(τ)> is (average) delay per cycle due to fluctuations

in number of events in neighboring processors.

Parallel efficiency (PE = t1p /tav) may be written:

PE = [ 1 + (tcom / t1p) +  <Δ(τ)>/nav ] -1

In limit of no communication time fluctuations still play important role:

Ideal PE           PEideal = [ 1 +  <Δ(τ)>/nav ] -1

where  <Δ(τ)>/nav  ~ 1/ nav
1/2

Parallel efficiency (PE) of SL algorithm
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Results for <Δ(τ)>/nav
Fractal model

             D/F dependence (Np = 4)                     Np dependence (D/F = 105)

0.1

1

103 104 105 106 107

<Δ(τ)>/n
av

<Δ
S
(τ)>/n

av

Fl
uc

tu
at

io
ns

D/F

Slope = 1/3

Fractal model:  N
p
 = 4

N
x
 = 256  N

y
 = 1024

  <Δ(τ)>/nav ~ (D/F)1/3   <Δ(τ)>/nav saturates for large Np



0

0.2

0.4

0.6

0.8

1

103 104 105 106 107

Square sub. (N=512)

Max. p. e. (square)
Strip sub. (N

x
 = 256 N

y
 = 1k)

Max. p. e. (strip)
Pa

ra
lle

l e
ff

ic
ie

nc
y

D/F

Edge diffusion model: N
p
 = 4

Edge-diffusion  Model

PEmax

Parallel efficiency as function of D/F (Np = 4)

0

0.2

0.4

0.6

0.8

1

103 104 105 106 107

Square sub. (N=512)

Max. p. e. (square)
Strip sub. (N

x
 = 256 N

y
 = 1k)

Max. p. e. (strip)

Pa
ra

lle
l e

ff
ic

ie
nc

y

D/F

Fractal model: N
p
 = 4

Fractal Model

PEmax

PEmax = 1/[1 + 0.2 (D/F)1/3/(NxNy)1/2]



Parallel efficiency as function of Np
(D/F = 105)
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Summary
• We have studied 3 different algorithms for parallel KMC:
conservative asynchronous (CA), synch. relaxation (SR), synch. sublattice (SL)

• CA algorithm not efficient due to rejection of bdy events

• SL algorithm significantly more efficient than SR algorithm

  SR algorithm:  PE ~ 1/log(Np)β  where β ≥ 1

  SL algorithm:  PE independent of Np   !

•  For all algorithms, communication time, latency, fluctuations play
    significant role

•  For more complex models, we expect that parallel efficiency
   of SR and SL algorithms will be significantly increased

Global synch.

Local synch.



Future work
• Extend SL algorithm to simulations with realistic geometry in

  order to carry out pKMC simulations of Cu epitaxial growth

=> properly include fast processes such as edge-diffusion

• Apply SR and SL algorithms to parallel TAD simulations of
   Cu/Cu(100) growth at low T (collaboration with Art Voter)
   => Vacancy formation and mound regularization

      in low temperature metal epitaxial growth

•  Develop hybrid algorithm combining SR + SL algorithms

•  Develop local SR algorithm

•  Implement SL and SR algorithms on shared memory machines


