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Summary:

➔ EO for Mean-Field Glasses (SK)  (n≤1000)
➔ Spin Glass Ground States with ~106 Spins
➔ EO for Defect Energies of Glasses in d=3,..,7
➔ Comparison with Mean-Field (d→∞) limit
Result: Mean-Field Prediction fails

Poster:
➔ EO vs Metropolis: Energy-Landscape Explorations
➔ EO of MAX-3-Coloring at Phase Transition
➔ EO for the Thomson Problem
➔ Theory of EO

● Applications of Extremal Optimization (EO)
Here:



Consider:
1) System of n variables, xi ∈  I .
2) Configurations S=(x

1
,...,x

n
) ∈  I n .

3) “Cost Function” C(S) .
4) Local Search “Neighborhood,” S':=N(S) .

Problem:
Find Global Minimum of C(S) 
when
1)n is large,
2)C(S) has many local   

Extrema in N.

=>Search-time t >> nk  for any k .

 Need: Seach “Heuristic” to find approximate solution in t~nk. 

.

C(S)

S

Hard Optimization Problems:



Spin Glass Ground States:

Spin Variables:

Ferro-magnetic Bonds:

Anti-ferro-mag Bonds:

J = +1

J = - 1 

x
i 
 =+1

Hamiltonian (Cost): 
H = - ∑∑

<i,j> 
Ji,j x i x j

”Fitness” of xi: 
λi = x

i
 ∑

j  
Ji,j x j

H = - ∑i λi

 xi

“FRUSTRATION”
Lattice (or Graph)

w/ fixed, random Bonds

 x
i 
 = -1



Extremal Optimization (EO)

●Motivated by Self-Organized Criticality

➔ Emergent Structure
without tuning any Control Parameters
despite (or because of) Large Fluctuations

●How can we use it to optimize?

➔ Extremal Driving:
Select and eliminate the “bad”,
Replace it at random,
Eventually, only the “good” is left!

 Evolutionary Search Heuristic



●Spin Glasses (eg. MAX-CUT):

λi = x
i 
∑

j  
Ji,j x j

            Cost ∝ H = -∑i λi

. ●Coloring (eg. Potts Anti-ferro):

λi = - (#-monochrome edges of x
i
) .

 xi

●Partitioning (eg. MIN-CUT):

 λi = - (#-cut edges of x
i
) .

 xi

.

 xi

“Fitness”  λ for various Problems:



>> “Extremal Optimization” (EO):  <<

 (1) Provide initial Configuration S=(x
1
,...,x

n
),

(3) Rank all i=∏(k) according to

λ
∏(1) 

 ≤λ
∏(2)  

 ...  ≤ ≤λ
∏(n)

 
 (2) Determine “Fitness” λi  for each Variable x

i 
,

(6) For t
max

 times, Repeat at (2),

(5) Update  x
w
  unconditionally,

(4) Select  x
w
 w/ w=∏(1), i.e. x

w
 has worst Fitness!

(7) Return: Best Cost(S) found along the way!



 EO-run for Partitioning (n=500):

Typical Extremal Optimization Run:

random
start

“mop-up”
phase

Convergence

Range of
Cost-

Fluctuations
in ∆t

∆t



τ-EO  -  Searching at the “Ergodic Edge”:

For Ranks  λ
∏(1) 

 ...  ≤ ≤λ
∏(n)

, update i=∏(k)  with

scale-free, power-law distribution<Cost>

  τ

 P(k) ∝ k -τ

0←τ
 random walk, 

too ergodic

τ→∞
 greedy + frozen, 

non-ergodic

τ–1~        
 “ergodic edge” 

1
ln n



 Results for τ-EO:  

●  Applications by Others:  

EO for Image Alignment (Batouche et al, [LNCS2449('02)330])

Aligned Images

EO



 Results for τ-EO:  

● For Spin Glasses:  

EO for 3d-Lattice Spin Glasses [PRL86('01)5211]

Genetic Algorithms by Pal [PhysicaA223('96)283]
and by Hartmann [EPL40('97)492]



 τ-EO for Sherrington-Kirkpatrick (SK):  

●  Mean-Field (d→∞) Spin Glasses:

Parisi's RSB Scaling Correction
=2/3ω

Kondor ('83)

Fluctuation Exponent
θ

f
=3/4



 Lattice Spin Glasses (at T=0): 

Defect-Energy: ●Reverse Bonds (Perturb) on scale L

●Measure Energy Fluctuations ΔE(L)

⇨Low-Energy Excitations (like “small Oscillations”)



Ground State E
0Ground State E

0  
E

0
'

●Reverse Bonds (Perturb) on scale L

 Lattice Spin Glasses (at T=0): 

Defect-Energy:

⇨Low-Energy Excitations (like “small Oscillations”)

●Measure Energy Fluctuations ΔE(L)

●Reverse Bonds (Perturb) on scale LMeasure “Stiffness”: (σ EΔ )~ 
Ly

⇨Low-Energy Excitations on bond-diluted  Lattices

After:
5 spins

Before:
100 spins



 Lattice Spin Glasses (at T=0): 

Defect-Energy:

⇨Low-Energy Excitations on bond-diluted  Lattices

Measure “Stiffness”: σ( EΔ )~ Ly



 Lattice Spin Glasses (at T=0): 

Defect-Energy:

How bond-diluted  Lattices?

Measure “Stiffness”: (σ EΔ )~ Ly

SGPM

1

Temp

0 Bond Density p

y>0

T
g

p
c

Why bond-diluted  Lattices?
➔Simpler Problem
➔Larger Sizes L
➔Better Scaling

T=0



 “Reduce” low-connected Spins, optimize the Remainder (T=0 only!):

 Reduction Method for sparse Graphs: 

 0-con:  1-con: 

 2-con: 
 3-con: 
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 Lattice Spin Glasses (at T=0): 

Applying the Reduction Rules:

Before:
100 spins

After:
5 spins



 Defect-Energy of diluted Lattices: 

“Stiffness”: (σ EΔ )~ Ly



 Stiffness Exponent y for Lattice Glasses:  

● Reduction plus τ-EO for dilute-Lattice ±J Glasses: 

      d=3      d= 4      d=5      d=6      d=7 (!) 



 Comparing with Mean-Field Theory: 

“Stiffness”: (σ EΔ )~ Ly

  y
RSB

 = d(1-θ
f
) 



 Cinderella Cluster: 

 18 Boxes w/ AthlonXP (2GHz), 512 Mb, no HD, Video, etc 

 1 Server w/ P4, 1Gb, RAID5, Tape, etc 

 Diskless NetBoot over fast Switch

 QUANTIAN_4.6.0.9 (Debian) w/ 
 TerminalServer
 OPENMOSIX loadbalancer
 MPI for parallel processing 

 Cost:  ~$8,000 



Conclusions:

●Extremal Optimization:
➔ Selection against extremely Bad ⇨ Greedy!
➔ No Rejection  ⇨ Large Fluctuations ⇨ No Trapping!
➔ Single, fixed Parameter (τ) ⇨ Simple!
➔τ-EO: Optimizing at the Ergodic Edge.
➔ Problems: Definition of Fitness and Sorting Ranks.

●Results:
➔ Works well for Partitioning, Coloring, Spin Glasses, 

Satisfiability, Pattern Recognition (at least!).
➔ Works poorly for TSP, Polymer Folding, ie. highly 

connected problems!
➔ Theory: “Jamming” Model, predicting  τ

opt 
↘ 1+.


