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Large-Scale Applications and Theory of Extremal Optimization

1 Extremal Optimization (EO) Algorithm [1]

o Motivated by far-from-equilibrium dynamics [2]:

— Emergent Structure (Self-Organized Criticality)
* No tuning of control parameters.
* Despite (or because of) large fluctuations.
* Required: Definition of “fitness” \;

e How can we use it to optimize?

— Extremal Driving (like Bak-Sneppen [3]):
* Select and eliminate the “bad” ); .
* Replace it at random.
* Eventually, only “good” is left.

“Fitness” A for various Problems:

*Spin Glasses (eg. MAX-CUT): f 1% ‘
1/ X,

N=x% X

iy %

Partitioning (eg. MIN-CUT):
A, = - (#-cut edges of x)

*Coloring (eg. Potts Anti-ferro):

I A, = - (#-monochrome edges of x’)l '

Costoc H=-2, N,

>> “Extremal Optimization” (EQ): <<

(1) Provide initial Configuration S=(x,.....x ),

p(2) Determine “Fitness” A, for each Variable x ,
(3) Rank all ;=[] (k) according to

A <A <.\
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(4) Select x _w/w=[I(1),ie.x hasworst Fitness!

(5) Update x, unconditionally,
=(0) For ¢ times, Repeat at (2),
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»(7) Return: Best C'(S) found along the way!

1-EO
ForRanks A < .. < 7\”””, update i=[[(k) with
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- Searching at the “Ergodic Edge™:
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2 Extremal vs Metropolis Landscape Search
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Plot of a typical run with a thermal search [4] at (above) and an extremal
search [5] (below) for a d = 3 Gaussian spin glass of size L = 7. The fluc-
tuating line marks the sequence of energies visited by the search. Energy
records are marked by down-triangles, barrier records by up-triangles.
The barrier records also demarcate the beginning and the end of a valley,
so each time interval between two consecutive vertical lines constitutes
a valley. Counting valleys starts (with ny = 0) for updates > N (where
N = 7% = 343 here) to avoid transient behavior. While the absolute en-
ergy scale between both searches is not significant here (two distinct in-
stances were used), the difference in range and shape of the fluctuations
is remarkable.

3 EO for MAX-3-Coloring [6]

We investigate the phase transition of the 3-coloring problem on random
graphs, using the extremal optimization heuristic. 3-coloring is among
the hardest combinatorial optimization problems and is closely related
to a 3-state anti-ferromagnetic Potts model. Like many other such opti-
mization problems, it has been shown to exhibit a phase transition in its
ground state behavior under variation of a system parameter: the graph’s
mean vertex degree. This phase transition is often associated with the in-
stances of highest complexity. We use extremal optimization to measure
the ground state cost and the “backbone”, an order parameter related to
ground state overlap, averaged over a large number of instances near the
transition for random graphs of size n up to 512. For graphs up to this
size, benchmarks show that extremal optimization reaches ground states
and explores a sufficient number of them to give the correct backbone
value after about O(n®5) update steps. Finite size scaling gives a critical
mean degree value a, = 4.703(28).

® For Graph-Coloring MAX-3-COL):
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Conmectivity COL/UNCOL Phase Transition:
Theory: o =469
Here: o= 470

4 Jamming Model of EO [7]

Jamming Model for T-EO :

Let: Only 3 states s for each «;,
Ai=-s, s€{0,1,2},
density of variables =z; in state s:
1 oo
palt) = il ===,
Cost function: 1
2
e(ty =3 sps(t)
=0
Annealed Flow Equation:
[rCt +1) = pr(0) + T2 5 TrsQs,
where

1
o Qs({p(t)}) = Prob. to update variable in
state g,
o T,.{{p(t)}) = Flow of variables to state r,
if variable in state s is updated.
Flow up
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Plot of the Hamming distance between successive low-energy records as
a function of the intervening barrier height. The relation for each value
of 7 appears to be in fact linear, even for 7 < 1 before the Hamming
distances saturate. Linearity is exemplified by the dashed line of slope 1;
the log-log scale was merely chosen for better visibility.

Furthermore, the exploration of the degenerate ground states indicates
that the backbone order parameter, measuring the constrainedness of the
problem, exhibits a first-order phase transition.

* For Graph-Coloring (MAX-3-COL):
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T-EO Eq. for Jammed Flow:
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b0 = >[-ao+iai].

b2 = T[3Qo+5Q1-(0- @],

1 = po+p1+p2.
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T-EO Evolution for Jammed Flow:
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