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1 Extremal Optimization (EO) Algorithm [1]
� Motivated by far-from-equilibrium dynamics [2]:

– Emergent Structure (Self-Organized Criticality)
� No tuning of control parameters.� Despite (or because of) large fluctuations.� Required: Definition of “fitness”

���
� How can we use it to optimize?

– Extremal Driving (like Bak-Sneppen [3]):
� Select and eliminate the “bad”

���
.� Replace it at random.� Eventually, only “good” is left.

2 Extremal vs Metropolis Landscape Search
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Plot of a typical run with a thermal search [4] at (above) and an extremal
search [5] (below) for a ���
	 Gaussian spin glass of size ���� . The fluc-
tuating line marks the sequence of energies visited by the search. Energy
records are marked by down-triangles, barrier records by up-triangles.
The barrier records also demarcate the beginning and the end of a valley,
so each time interval between two consecutive vertical lines constitutes
a valley. Counting valleys starts (with ������� ) for updates ��� (where
���������	���	 here) to avoid transient behavior. While the absolute en-
ergy scale between both searches is not significant here (two distinct in-
stances were used), the difference in range and shape of the fluctuations
is remarkable.
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Plot of the Hamming distance between successive low-energy records as
a function of the intervening barrier height. The relation for each value
of  appears to be in fact linear, even for  �!�" before the Hamming
distances saturate. Linearity is exemplified by the dashed line of slope 1;
the log-log scale was merely chosen for better visibility.

3 EO for MAX-3-Coloring [6]

We investigate the phase transition of the 3-coloring problem on random
graphs, using the extremal optimization heuristic. 3-coloring is among
the hardest combinatorial optimization problems and is closely related
to a 3-state anti-ferromagnetic Potts model. Like many other such opti-
mization problems, it has been shown to exhibit a phase transition in its
ground state behavior under variation of a system parameter: the graph’s
mean vertex degree. This phase transition is often associated with the in-
stances of highest complexity. We use extremal optimization to measure
the ground state cost and the “backbone”, an order parameter related to
ground state overlap, averaged over a large number of instances near the
transition for random graphs of size � up to 512. For graphs up to this
size, benchmarks show that extremal optimization reaches ground states
and explores a sufficient number of them to give the correct backbone
value after about #�$ � �&% ')( update steps. Finite size scaling gives a critical
mean degree value *,+-�
��. ��/	�$10�2 ( .

Furthermore, the exploration of the degenerate ground states indicates
that the backbone order parameter, measuring the constrainedness of the
problem, exhibits a first-order phase transition.
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4 Jamming Model of EO [7]


