Ab Initio Crystal Structure Prediction: High-throughput and Data Mining

Dane Morgan Massachusetts Institute of Technology

NSF Division of Materials Research ITR Computational Workshop June 17-19, 2004

Why Does Structure Matter? Essential for Rational Materials Design

- Structure key to understand properties and performance
- Key input for property computational modeling

Why Do We Need Structure Predictions? Structural Information is Often Lacking

Massalski, Binary Alloy Phase Diagrams '90

The Structure Prediction Problem

Given elements A, B, C, ... predict the stable low-temperature phases

Present focus

Crystalline phases Ab initio methods

Why is Structure Prediction Hard?

Ab initio methods give accurate energies, but ...

Atomic positions

- Infinite structural space
- Rough energy surface many local minima

High-Throughput Ab Initio

υ

Data Mining Calculated/Experimental Databases

High-Throughput Ab Initio

Ab Initio Structure Prediction

Obtain a manageable list of likely candidate structures for high-throughput calculation

- Directly optimize ab initio Hamiltonian with Monte Carlo, genetic algorithms, etc. (too slow)
- Simplified Hamiltonians potentials, cluster expansion (fitting challenges, limited transferability/accuracy)

"Usual Suspects" Structure List

80 binary intermetallic alloys 176 "usual suspects" structures ("usual suspects" = Most frequent in CRYSTMET, hcp, bcc, fcc superstructures)

~14,000 Energies

Calculate energies Construct convex hulls Compare to experiment

Metals Database

High-Throughput Predictions

- 95 predictions of new compounds
- 21 predictions for unidentified compounds
- 110 agreements
- 3 unambiguous errors

Curtarolo, et al., Submitted '04

But far too many structures + alloys to explore!! Need smart way to choose "sensible" structures!!

Data Mining

New alloy system A,B,C,...

Predicted crystal structure

Data Mining with Correlations

Atomic positions

Linear correlations between energies

All energies do not need to be calculated

Faster to find low energies

Do linear correlations exist between structural energies across alloys?

Structural Energy Correlations Exist!

Principal Component Analysis identifies correlations

Using Correlations for Structure Prediction

Data Mining Example: AgCd

Compound Forming Vs. Phase Separating

Ground State Prediction

Conclusions

- High-throughput ab initio approaches are a powerful tool for crystal structure prediction.
- Data Mining of previous calculations can create significant speedup when studying new systems.

Future work

More experimental/computed data More data mining tools Web interface

Practical tool to predict crystal structure

Web Access to Database

Easy Interface

Test - Microsoft Internet Explorer
File Edit View Favorites Tools Help
😋 Back 🔹 💿 🔹 📓 🏠 🔎 Search 🌟 Favorites 🔇 Media 🤣 😥 🛬 💹 🔹 🧾 🎇
Address 🕘 http://
Scientific Computational Analysis and Research of Materials
Listed Alloys Select from the following list to view the convex hull applet and analysis summary
AgAu 💌
Submit Reset
Structural and Computational

Data, Visualization

System Name: AgAu

Initial Poscar File Visualization for System Name: AgAu Structure ID: 239

Analysis: Convex hull, Ground States

Ground States for AgAu										
Description	Structure Number	Structure Name	Composition	Total Energy (ev/atom)	Formation Energy (ev/atom)	Energy above hull (ev/atom)	Cutoff Energy (ev/atom)	Pseudopotential	хс_арргох	xc_func
Show	2	2	0.0	-3.743	0.0	0.0	270.9	US	LDA	CA
Show	286	286	0.2	-3.907	-0.034	0.0	270.9	US	LDA	CA
Show	279	279	0.25	-3.948	-0.043	0.0	270.9	US	LDA	CA
Show	26	26	0.25	-3.948	-0.043	0.0	270.9	US	LDA	CA

Please drag mouse to change orientation. Right click on applet to choose visual settings

Collaborators/Acknowledgements

Collaborators

- ♦ Mohan Akula (MIT)
- Stefano Curtarolo (Duke)
- Chris Fischer (MIT)
- Kristin Persson (MIT)
- John Rodgers (NRC Canada, Toth, Inc.)
- Kevin Tibbetts (MIT)

Funding

National Science Foundation Information Technology Research (NSF-ITR) Grant No. DMR-0312537

