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Project Goals

Physics Goals: Explore quantum phase transitions in strongly

correlated electron systems in order to

I elucidate non-Fermi-liquid properties;

I understand “local criticality” in heavy fermions.

IT Goals: Advance the numerical RG method by providing

I new algorithms (e.g., for Bose-Fermi problems);

I efficient, adaptable codes for “complex” impurity problems (e.g.,

orbital degeneracy, coupled quantum dots, DMFT & beyond).



“Classic” Quantum Impurity Models
I Describe local, dynamical degree of freedom coupled to

dispersive bath(s) of noninteracting (quasi)particles.

I E.g., Kondo model for a spin S coupled to a conduction band

H = J S · s + Hcond,

where

s = 1
2

∑
σ,σ′ c

†
0σ σσσ′ c0σ′, Hcond =

∑
k,σ εkc

†
kσckσ, |εk| ≤ D.

I Breakdown of perturbative expansion in J/D prompted

development of many techniques.

. Approximate: perturbative scaling/RG, large-degeneracy.

. Exact (but limited): Bethe ansatz, bosonization.

. Numerical (controlled): numerical RG, Quantum Monte Carlo.



“Modern” Quantum Impurity Models
I Feature some or all of the following:

. complex impurities with many internal degrees of freedom;

. multiple impurities and/or multiple conduction bands;

. coupling to bosonic baths.

I Topical examples include . . .

. Magnetic clusters on metallic surfaces [Crommie; Manoharan; . . .]

. Coupled quantum dots

. Cluster corrections to the dynamical mean-field theory of

correlated lattice fermions [Jarrell et al. (1998); Kotliar et al. (2001)]

. Bose-Fermi impurity models:
◦ Enter the extended dynamical mean-field treatment of

heavy fermions [Si et al. (2001)].
◦ Describe quantum dots coupled to noisy leads [Le Hur (2004)].



Critical Local Moments in Lattice Problems

The Bose-Fermi Kondo model arises in the extended DMFT

treatment of the Kondo lattice [Si et al. (2001, 2003)]:

I Extended DMFT includes some spatial fluctuations [Smith & Si

(2000); Chitra & Kotliar (2000)].

I Effective impurity

model couples a

local spin to a

fermionic bath

and a vector-

bosonic bath.

I Bath densities of

states must be

determined

self-consistently.
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EDMFT Prediction: Two Types of Quantum Criticality

conventional criticality

ξ

only long-wavelength

fluctuations are important

“local criticality”

a

ξ

long-wavelength and spatially

local (dynamical) fluctuations

play central roles

The locally critical QCP reproduces some anomalous properties of

CeCu6−xAux and YbRh2Si2.



The Bose-Fermi Kondo Model
I Describes a local spin S coupled both to delocalized fermions

(e.g., a conduction band) and bosons (e.g., phonons).

I Isotropic version has a Hamiltonian

H = J S · s + HFermi + g S ·u + HBose,

where (for α = x, y, z)

sα = 1
2

∑
σ,σ′ c

†
0σ σα

σσ′ c0σ′

HFermi =
∑

k,σ εkc
†
kσckσ

uα = a0α + a†0α,

HBose =
∑

q,α ωqa†qαaqα.

I Anisotropic versions distinguish between

Jz and Jx = Jy = J⊥,

gz and gx = gy = g⊥.



The Bose-Fermi Kondo Model (continued)

H = J S · s + HFermi + g S ·u + HBose.
I Take a flat fermionic density of states:

(ε)ρ

ε
0−D D

ρ(ε) = ρ0 for |ε| ≤ D.

I Assume a power-law bosonic spectral function:

0

Β(ω)

ωωc

B(ω) = K2
0 ωc(ω/ωc)

s.



Perturbative Solutions of the Bose-Fermi Kondo Model
I The model has been solved by expansion in ε = 1− s [Si & Smith

(1999), Sengupta (2000), Zhu & Si (2002), Zaránd & Demler (2002)].

I A QCP separates Kondo

and bosonic regimes.

I Critical point couplings

ρ0J
∗ and K0g

∗ are of order

ε (except for g⊥ = 0).

I At QCP, χloc shows power

laws in ω and T with ε-

dependent exponents. g

J

0

I Locally critical EDMFT solution corresponds to ε = 1−.

⇒ Seek non-perturbative solutions.



Numerical Renormalization Group Method [Wilson (1974)]
I Replaces a continuum of fermionic states (|ε| ≤ D) by a discrete

set having energies ε = ±D, ±DΛ−1, ±DΛ−2, . . . (Λ > 1).

I Then the kinetic energy is converted to a tight-binding form:

HFermi = D
∑

σ

∑∞
n=0 Λ−n/2

(
c†n,σcn−1,σ + h.c.

)
,

where only c0,σ couples to the impurity.
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I The exponential decay of the hopping permits iterative solution

via diagonalization of progressively longer chains.



Discretizing a Bosonic Bath
I Can use the same energy discretization as for fermions.

I No negative-ω states ⇒ hopping coefficients decay faster:

HBose = D
∑

α

∑∞
n=0

[
tΛ−n

(
a†n,αan−1,α + h.c.

)
+ eΛ−na†n,αan,α

]
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I This discretization has been used to study the spin-boson model

[Bulla et al. (2003)].



Combining Fermionic and Bosonic Baths
I Seek an iterative procedure that treats simultaneously fermionic

and bosonic degrees of freedom having the same energy scale.

I One method: add a bosonic site at every second iteration:
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I Iterate until reach a scale-invariant fixed point describing the

ground state.



Adding Bosons = More CPU Time!
I Add a fermionic site ⇒ basis increases by a factor NF = 4.

I Number of bosons on each site is unlimited, but restrict it to no

more than Nb per bath. 4 ≤ Nb ≤ 8 seems to suffice.

I Add both fermionic and bosonic sites ⇒ basis increases by

NF = 4(Nb+1)n for n Bose baths.

I After a few iterations, basis is so large that can retain only the M

states of lowest-energy. Typically, 500 ≤ M ≤ 2000.

I As in other “modern” impurity problems, large NF and M lead to

long CPU times ∼ O
[
(NFM)3

]
.

I To tackle these problems, we are developing parallelized NRG

codes (using MPI, ScaLAPACK).



Initial Results: Bose-Fermi Kondo and Anderson Models
I Have started with the Ising-symmetry (g⊥ = 0) model:

Himp = JS · s + gSz(a0 + a†0).

Has smallest NF , and is possibly the most relevant for

CeCu6−xAux.

I Have calculated phase di-

agram, T = 0 impurity

dynamics, and static mag-

netic response.

I Will show results along

constant-J cuts through the

parameter space.
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                                                            Increasing ∆ < ∆c  for s = 0.7
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Kondo regime: A(0) is pinned, but the Abrikosov-Suhl resonance

narrows as ∆ → ∆c, signaling suppression of the Kondo effect.

Impurity Spectral Function [∆ = (K0g)2]



−0.01 −0.005 0 0.005 0.01

ω

0

100

200

300

400

500

A
(ω

)

                                                          Decreasing ∆ > ∆c for s = 0.7

−1e−07 −5e−08 0 5e−08 1e−07
0

50

100

150

200

250

Bosonic regime: A low-energy feature grows as ∆ → ∆c.

Impurity Spectral Function [∆ = (K0g)2]
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Passing through the quantum critical point, A(0) undergoes a jump.

Impurity Spectral Function [∆ = (K0g)2]



−5.5 −5 −4.5 −4 −3.5 −3

 log |∆−∆c|

−20

−18

−16

−14

−12

−10

−8

lo
g 

ω
∗

  Vanishing of crossover scale ω∗ for ∆ −−> ∆c
+ 

−1.5e−09 0 1.5e−09

ω

0

500

1000

1500

A
(ω

)

 ω∗ ~ |∆ − ∆c|
γ

γ = 2.29

s = 0.7

Can extract the same critical exponent from the width of the

Abrikosov-Suhl resonance and from the many-body eigenspectrum.



Static Susceptibility



Summary
I Have implemented the first numerical renormalization group

treatment of a quantum impurity coupled to both fermionic and

bosonic baths.

I As an initial application, are studying the Ising-symmetry

Bose-Fermi Kondo model.

I The method should permit study of critical properties beyond the

range of perturbative methods.

I The method will extend to other models and can serve as an

impurity solver in extended DMFT treatments of lattice fermion

problems.

I Parallelized, readily-adaptable NRG codes will be available for a

wide range of quantum impurity problems.


