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Project Goals

Physics Goals: Explore quantum phase transitions in strongly
correlated electron systems in order to

» elucidate non-Fermi-liquid properties;

» understand “local criticality” in heavy fermions.

IT Goals: Advance the numerical RG method by providing
» new algorithms (e.g., for Bose-Fermi problems);

» efficient, adaptable codes for “complex” impurity problems (e.qg.,
orbital degeneracy, coupled quantum dots, DMFT & beyond).



“Classic” Quantum Impurity Models

» Describe local, dynamical degree of freedom coupled to
dispersive bath(s) of noninteracting (quasi)particles.
» E.g., Kondo model for a spin S coupled to a conduction band

H=JS -8+ H.a,
where
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» Breakdown of perturbative expansion in J/D prompted
development of many techniques.

> Approximate: perturbative scaling/RG, large-degeneracy.
> Exact (but limited): Bethe ansatz, bosonization.

> Numerical (controlled): numerical RG, Quantum Monte Carlo.



“Modern” Quantum Impurity Models

» Feature some or all of the following:
> complex impurities with many internal degrees of freedom;
> multiple impurities and/or multiple conduction bands;

> coupling to bosonic baths.

» Topical examples include . ..

> Magnetic clusters on metallic surfaces [Crommie; Manoharan; . . .]

> Coupled quantum dots

> Cluster corrections to the dynamical mean-field theory of
correlated lattice fermions [Jarrell et al. (1998); Kotliar et al. (2001)]

> Bose-Fermi impurity models:
o Enter the extended dynamical mean-field treatment of

heavy fermions [Si et al. (2001)].
o Describe guantum dots coupled to noisy leads [Le Hur (2004)].



Critical Local Moments In Lattice Problems

The Bose-Fermi Kondo model arises in the extended DMFT
treatment of the Kondo lattice [Si et al. (2001, 2003)]:

» Extended DMFT includes some spatial fluctuations [Smith & Si
(2000); Chitra & Kotliar (2000)].

» Effective impurity
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EDMFT Prediction: Two Types of Quantum Criticality

conventional criticality “local criticality”
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only long-wavelength long-wavelength and spatially
fluctuations are important local (dynamical) fluctuations
play central roles

The locally critical QCP reproduces some anomalous properties of
CeCug_,Au, and YbRhsSis.



The Bose-Fermi Kondo Model

» Describes a local spin S coupled both to delocalized fermions
(e.g., a conduction band) and bosons (e.g., phonons).

» |sotropic version has a Hamiltonian

H:JSS+HFerm1—I_gSu+HBOS€7

where (for a =z, vy, 2)
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» Anisotropic versions distinguish between
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The Bose-Fermi Kondo Model (continued)
H = JS-S+HFermi+gS-u+HBOSQ.

» Take a flat fermionic density of states:

A
p(€)
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» Assume a power-law bosonic spectral function:

A
B(w)

B(w) = K wc<w/wc)8'




Perturbative Solutions of the Bose-Fermi Kondo Model

» The model has been solved by expansion in € = 1 — S [Si & Smith
(1999), Sengupta (2000), Zhu & Si (2002), Zarand & Demler (2002)].

» A QCP separates Kondo A
and bosonic regimes.

» Critical point couplings
poJ " and Kg* are of order
€ (except for g, = 0).

> At QCP, Y1, Shows power
laws in w and T with e-
dependent exponents.

» Locally critical EDMFT solution corresponds to e = 1.
—> Seek non-perturbative solutions.



Numerical Renormalization Group Method  [Wwilson (1974)]

» Replaces a continuum of fermionic states (|e| < D) by a discrete
set having energies € = £+ D, DAY, £DAT?, L (A >1).

» Then the kinetic energy is converted to a tight-binding form:
HFermi — D ZJ Z:LO:O A_n/Q (C;rl,dcn—l,a + hC) ,
where only ¢, , couples to the impurity.
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» The exponential decay of the hopping permits iterative solution
via diagonalization of progressively longer chains.



Discretizing a Bosonic Bath

» Can use the same energy discretization as for fermions.

» NoO negative-w states = hopping coefficients decay faster:

Hisge = DY, 30000 [0 (a],00, 1+ he) +€A7"0] 0]
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» This discretization has been used to study the spin-boson model
[Bulla et al. (2003)].



Combining Fermionic and Bosonic Baths

> Seek an iterative procedure that treats simultaneously fermionic
and bosonic degrees of freedom having the same energy scale.

» One method: add a bosonic site at every second iteration:

electrons
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> Iterate until reach a scale-invariant fixed point describing the
ground state.



Adding Bosons = More CPU Time!

» Add a fermionic site = basis increases by a factor Ny = 4.

» Number of bosons on each site is unlimited, but restrict it to no
more than NV, per bath. 4 < N, < 8 seems to suffice.

» Add both fermionic and bosonic sites = basis increases by
Nr = 4(N,+1)" for n Bose baths.

> After a few iterations, basis is so large that can retain only the M
states of lowest-energy. Typically, 500 < M < 2000.

> As in other “modern” impurity problems, large Ny and M lead to
long CPU times ~ O [(NpM)?|.

» To tackle these problems, we are developing parallelized NRG
codes (using MPI, ScaLAPACK).



Initial Results: Bose-Fermi Kondo and Anderson Models
» Have started with the Ising-symmetry (g, = 0) model:
Himp = JS -8+ gS.(a, +aj)).

Has smallest Nz, and is possibly the most relevant for
CeCug_,Au,.

» Have calculated phase di-
agram, 7' = 0 impurity
dynamics, and static mag-
netic response.

» Will show results along
constant-J cuts through the
parameter space.




Impurity Spectral Function [A = (Kyg)?]

Increasing A<A_ for s=0.7
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Kondo regime: A(0) is pinned, but the Abrikosov-Suhl resonance
narrows as A — A, sighaling suppression of the Kondo effect.



Impurity Spectral Function [A = (Kyg)?]

Decreasing A > A_for s=0.7
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Bosonic regime: A low-energy feature grows as A — A..



Impurity Spectral Function [A = (Kyg)?]
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Passing through the quantum critical point, A(0) undergoes a jump.



Vanishing of crossover scale w_for A ——> A *
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Can extract the same critical exponent from the width of the
Abrikosov-Suhl resonance and from the many-body eigenspectrum.
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Summary

» Have implemented the first numerical renormalization group
treatment of a quantum impurity coupled to both fermionic and
bosonic baths.

» As an initial application, are studying the Ising-symmetry
Bose-Fermi Kondo model.

» The method should permit study of critical properties beyond the
range of perturbative methods.

» The method will extend to other models and can serve as an
impurity solver in extended DMFT treatments of lattice fermion
problems.

» Parallelized, readily-adaptable NRG codes will be available for a
wide range of quantum impurity problems.



