Recent Progess in Linear Scaling Quantum Monte Carlo Algorithms

Introduction: Scaling in Classical and Quantum Monte Carlo

* Linear Scaling Algorithm for Quantum Simulations

* Progress in Solving the Conditioning Problem

* Conclusions/Future Directions

Z. Bai (UCD, Computer Science and Applied Math)I. Yamazaki (UCD, Computer Science)R.T. Scalettar (UCD, Physics)

NSF ITR 0313390

ITR Significance

 * Example of interplay between computer science/applied mathematics and an important materials theory problem
* Addressing linear algebra problem at center of Quantum Monte Carlo for lattice fermion models

Materials Science Objective

Applications to Correlated Electron Models:

- * Hubbard Hamiltonian
- * Periodic Anderson Hamiltonian
- * Impurity solvers in Dynamical Mean Field Theory

Applications to Physics of Materials with Strongly Correlated Bands:

- * Magnetism
- * Metal-Insulator Transitions

Classical Monte Carlo

Energy of set of degrees of freedom x_i is local:

$$E = \sum_{i}^{N} x_{i} \sum_{j \in \mathcal{N}(i)} \kappa_{ij} x_{j}$$

 x_i couples only to x_j only in some neighborhood $\mathcal{N}(i)$.

Suggest change $x_i \to x'_i$. Need to evaluate

$$e^{-\beta E'}/e^{-\beta E} = e^{-\beta \Delta E}$$
 $\beta = 1/T$

Since $\mathcal{N}(i)$. is independent of system size, so is time to update x_i .

CONCLUSION:

Time to do update all degrees of freedom is linear in the lattice size.

Quantum Monte Carlo

Classical Boltzmann weight, an exponential of a number, E, becomes the exponential of an operator, H:

$$e^{-\beta E} \to e^{-\beta \hat{H}}$$

Express this as a path integral.

Extra "imaginary time" dimension of extent $\beta = 1/T$.

* If \hat{H} is local, time is still linear in spatial lattice size. * Cost is only extra dimension of lattice, a factor $\propto 1/T$.

This works for quantum spins and bosons (unfrustrated lattices). But, "sign problem" for fermions. If electron world lines exchange, the contribution to partition function is negative. Solution: Eliminate fermion operators with a "Hubbard-Stratonovich" transformation. This introduces classical variables $x(i, \tau)$ living on space-time lattice. Replace

 $e^{-\beta E} \to \det \mathcal{M}(x)$

 \mathcal{M} is a matrix of dimension NL where N is the spatial lattice size and L is proportional to the inverse temperature $\beta = 1/T$.

To do the simulation one needs to compute the ratio of the determinant of \mathcal{M} before and after a monte carlo move $x \to x'$.

$\det \mathcal{M}(x')/\det \mathcal{M}(x)$

- * CPU time $\propto (NL)^3$ to update one $x(i, \tau)$.
- * Time to sweep entire lattice $\propto (NL)^4$.

* Take advantage of special structure of \mathcal{M} and locality of \hat{H} to reduce scaling to $N^3 L$.

 $\mathcal{M}=$

B ₁	I				
	B ₂	I			
		B ₃	I		
			B ₄	I	
				B ₅	I
I					B ₆

Present Simulations

1		(0 0,	
Time \propto	10^2	100^{3}	100	10^{4}	/ 10 ⁹	$\approx 10^5$ seconds
	prefactor	N^3	L	sweeps	/ clock	speed one day

Goal

3-d lattices (or larger 2-d lattices) $N=10 \times 10 \times 10 = 10^3$ Time $\approx 10^8$ seconds

Linear Scaling Algorithm

Multidimensional Gaussian Integral

$$\int d\Phi \, e^{-\Phi^T \mathcal{A} \Phi} \propto (\det \mathcal{A})^{-\frac{1}{2}}$$

A: a real symmetric matrix

 Φ : a vector

Recasting,

$$\int d\Phi \, e^{-\Phi^T \, (\mathcal{M}\mathcal{M}^T)^{-1} \Phi} \propto \det \mathcal{M}$$

Quantum Monte Carlo

$$\int dx \int d\Phi e^{-\Phi^T (\mathcal{M}\mathcal{M}^T)^{-1}\Phi} \propto \det \mathcal{M}$$

Integrate over both

- * $x(i, \tau)$: Classical Hubbard-Stratonovich variables introduced to eliminate fermion interactions.
- * $\Phi(i, \tau)$: Variables which replace determinant by Gaussian integral.
- * Entries in \mathcal{M} depend on $x(i, \tau)$

Linear Scaling

Updating Φ in order NL is trivial:

$$\Phi = \mathcal{M}R$$

R: a vector of independent Gaussian random numbers Recall \mathcal{M} is sparse.

Updating $x \to x + \delta x$ requires computation of

$$\delta\left(\Phi^{T}\left(\mathcal{M}\mathcal{M}^{T}\right)^{-1}\Phi\right) = \Phi^{T}\left(\mathcal{M}\mathcal{M}^{T}\right)^{-1}\delta(\mathcal{M}\mathcal{M}^{T})^{-1}\left(\mathcal{M}\mathcal{M}^{T}\right)^{-1}\Phi$$

Need Iterative Solver for $(\mathcal{M}\mathcal{M}^T)^{-1}\Phi$ \mathcal{M} and \mathcal{M}^T are sparse: multiplication on a vector is NL. But they are poorly conditioned!

* Conjugate Gradient iteration number grows rapidly with N and L

Conditioning

Use (analytically known) matrix inverse in certain physical limits:

- U = 0 electron-electron interactions are zero
- t = 0 electron kinetic energy is zero

Hubbard Hamiltonian

$$H = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Eigenspectrum on Noninteracting Electrons

• U=0 preconditioning

Special pattern of eigenvalues comes from structure of matrix.

Effect of Conditioning

This should have been an easy case:

Small lattice (16 sites)

Weak coupling

But iteration number grows linearly with system size NL.

Incomplete Cholesky is okay?

Effect of Conditioning

Somewhat more realistic case:

Still Small lattice (16 sites)

Moderate coupling (strong enough to see magnetic ordering)

U = 0 Conditioning

Eigenvalue spectrum worsened

U = 0 Conditioning

Entire spectrum

Cholesky Decomposition

$$\mathcal{M}\mathcal{M}^T = \qquad L \qquad D \qquad U$$

lower diagonal upper triangular triangular

 $U^{-1}D^{-1}L^{-1}$ is exact inverse of $\mathcal{M}\mathcal{M}^T$.

- * conjugate gradient converges in a single iteration
- * but costs $(NL)^3$ to compute
- * L and U do not preserve sparsity pattern of $\mathcal{M}\mathcal{M}^T$.

Incomplete Cholesky Decomposition

- * Insist L and U have sparsity pattern of $\mathcal{M}\mathcal{M}^T$.
- * $(NL)^{1}$
- * Good, but not good enough.
- * Same sort of blow-up of iteration number as with t = 0 and U = 0 conditioning at physically interesting lattice sizes, temperature, interaction strengths.

Improving Incomplete Cholesky

- * Bai and Yamazaki introduce "drop tolerance", a control parameter to allow a somewhat larger number of fill-ins of triangular matrices than in original $\mathcal{M}\mathcal{M}^T$.
- * Original Incomplete Cholesky: drop tolerance $\approx 10^{-2} 10^{-3}$.
- * Observe eigenvalues of conditioned matrix collapse better and better on the unit circle $|\lambda| = 1$ in the complex plane.

Improving Incomplete Cholesky

* Detail of first quadrant of previous distribution.

Scaling with Inverse Temperature

- * Number of iterations is only weakly growing with L (roughly $L^{4/3}$)
- * Entire algorithm will scale linearly with inverse temperature.

Scaling with Spatial Size

- * Number of iterations is only weakly growing with N
- * Entire algorithm will scale linearly with spatial size

Scaling with Interaction Strength

- * Number of iterations is grows with U (as expected)
- * Simulations about four times as expensive at U = 8 than at U = 4.

Conclusions

- * Have constructed a robust conditioner for matrices arising in determinant Quantum Monte Carlo simulations.
- * ITR crucial: Fostered computer science/physics interaction.

Future

- * Implement in Full QMC code
- * Investigate parallelization
- * Look at quadratic form instead of full vector
- * Address analogous issues in "dynamical mean field theory" simulations with many orbitals.