Recent Progess in Linear Scaling Quantum Monte Carlo Algorithms

\author{

* Introduction: Scaling in Classical and Quantum Monte Carlo
 * Linear Scaling Algorithm for Quantum Simulations
 * Progress in Solving the Conditioning Problem
 * Conclusions/Future Directions
}
Z. Bai (UCD, Computer Science and Applied Math)
I. Yamazaki (UCD, Computer Science)
R.T. Scalettar (UCD, Physics)

NSF ITR 0313390

ITR Significance

* Example of interplay between computer science/applied mathematics and an important materials theory problem
* Addressing linear algebra problem at center of

Quantum Monte Carlo for lattice fermion models

Materials Science Objective

Applications to Correlated Electron Models:

* Hubbard Hamiltonian
* Periodic Anderson Hamiltonian
* Impurity solvers in Dynamical Mean Field Theory

Applications to Physics of Materials with Strongly Correlated Bands:

* Magnetism
* Metal-Insulator Transitions

Classical Monte Carlo

Energy of set of degrees of freedom x_{i} is local:

$$
E=\sum_{i}^{N} x_{i} \sum_{j \in \mathcal{N}(i)} \kappa_{i j} x_{j}
$$

x_{i} couples only to x_{j} only in some neighborhood $\mathcal{N}(i)$.

Suggest change $x_{i} \rightarrow x_{i}^{\prime}$. Need to evaluate

$$
e^{-\beta E^{\prime}} / e^{-\beta E}=e^{-\beta \Delta E} \quad \beta=1 / T
$$

Since $\mathcal{N}(i)$. is independent of system size, so is time to update x_{i}.

CONCLUSION:

Time to do update all degrees of freedom is linear in the lattice size.

Quantum Monte Carlo

Classical Boltzmann weight, an exponential of a number, E, becomes the exponential of an operator, H :

$$
e^{-\beta E} \rightarrow e^{-\beta \hat{H}}
$$

Express this as a path integral.
Extra "imaginary time" dimension of extent $\beta=1 / T$.

* If \hat{H} is local, time is still
linear in spatial lattice size.
* Cost is only extra dimension of lattice, a factor $\propto 1 / T$.

This works for quantum spins and bosons (unfrustrated lattices).
But, "sign problem" for fermions.
If electron world lines exchange, the contribution to partition function is negative.

Solution: Eliminate fermion operators with a "Hubbard-Stratonovich" transformation. This introduces classical variables $x(i, \tau)$ living on space-time lattice. Replace

$$
e^{-\beta E} \rightarrow \operatorname{det} \mathcal{M}(x)
$$

\mathcal{M} is a matrix of dimension $N L$ where N is the spatial lattice size and L is proportional to the inverse temperature $\beta=1 / T$.

To do the simulation one needs to compute the ratio of the determinant of \mathcal{M} before and after a monte carlo move $x \rightarrow x^{\prime}$.

$$
\operatorname{det} \mathcal{M}\left(x^{\prime}\right) / \operatorname{det} \mathcal{M}(x)
$$

* CPU time $\propto(N L)^{3}$ to update one $x(i, \tau)$.
* Time to sweep entire lattice $\propto(N L)^{4}$.
* Take advantage of special structure of \mathcal{M} and locality of \hat{H} to reduce scaling to $N^{3} L$.
$B_{l}=$ sparse dimension N matrices.
$I=$ dimension N identity matrix.

Present Simulations

$$
\begin{array}{lll}
\mathrm{N}=10 \times 10=100 & & (2-d \text { lattice }) \\
\mathrm{L}=100 & & (\text { to reach low temperature }) \\
\text { Sweeps }=10^{4} & & \\
& \text { (monte carlo averaging })
\end{array}
$$

Goal

$3-d$ lattices (or larger $2-d$ lattices)
$N=10 \times 10 \times 10=10^{3}$
Time $\approx 10^{8}$ seconds

Linear Scaling Algorithm

Multidimensional Gaussian Integral

$$
\int d \Phi e^{-\Phi^{T} \mathcal{A} \Phi} \propto(\operatorname{det} \mathcal{A})^{-\frac{1}{2}}
$$

A : a real symmetric matrix
Φ : a vector

Recasting,

$$
\int d \Phi e^{-\Phi^{T}\left(\mathcal{M M}^{T}\right)^{-1} \Phi} \propto \operatorname{det} \mathcal{M}
$$

Quantum Monte Carlo

$$
\int d x \int d \Phi e^{-\Phi^{T}\left(\mathcal{M M}^{T}\right)^{-1} \Phi} \propto \operatorname{det} \mathcal{M}
$$

Integrate over both

* $x(i, \tau)$: Classical Hubbard-Stratonovich variables introduced
to eliminate fermion interactions.
* $\Phi(i, \tau)$: Variables which replace determinant by Gaussian integral.
* Entries in \mathcal{M} depend on $x(i, \tau)$

Linear Scaling

Updating Φ in order $N L$ is trivial:

$$
\Phi=\mathcal{M} R
$$

R : a vector of independent Gaussian random numbers
Recall \mathcal{M} is sparse.

Updating $x \rightarrow x+\delta x$ requires computation of

$$
\delta\left(\Phi^{T}\left(\mathcal{M M}^{T}\right)^{-1} \Phi\right)=\Phi^{T}\left(\mathcal{M M}^{T}\right)^{-1} \delta\left(\mathcal{M} \mathcal{M}^{T}\right)^{-1}\left(\mathcal{M}^{T}\right)^{-1} \Phi
$$

Need Iterative Solver for $\left(\mathcal{M M}^{T}\right)^{-1} \Phi$
\mathcal{M} and \mathcal{M}^{T} are sparse: multiplication on a vector is $N L$.
But they are poorly conditioned!

* Conjugate Gradient iteration number grows rapidly with N and L

Conditioning

Use (analytically known) matrix inverse in certain physical limits:
$U=0 \quad$ electron-electron interactions are zero
$t=0 \quad$ electron kinetic energy is zero

Hubbard Hamiltonian

$$
H=-t \sum_{\langle i j\rangle \sigma}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

- no preconditioning
- $\mathrm{U}=0$ preconditioning

Special pattern of eigenvalues

comes from structure of matrix.

Effect of Conditioning

This should have been an easy case:

Small lattice (16 sites)

Weak coupling
But iteration number grows linearly with system size $N L$.
Incomplete Cholesky is okay?

Effect of Conditioning

Somewhat more realistic case:

Still Small lattice (16 sites)
Moderate coupling (strong enough to see magnetic ordering)

$U=0$ Conditioning

- no preconditioning
- $\mathrm{U}=0$ preconditioning

Eigenvalue spectrum worsened

$U=0$ Conditioning

- no preconditioning
- $\mathrm{U}=0$ preconditioning

Entire spectrum

Cholesky Decomposition

$$
\mathcal{M M}^{T}=\quad L \quad D \quad U
$$

$$
\begin{array}{ll}
\text { lower diagonal } & \text { upper } \\
\text { triangular } & \text { triangular }
\end{array}
$$

$U^{-1} D^{-1} L^{-1}$ is exact inverse of $\mathcal{M} \mathcal{M}^{T}$.

* conjugate gradient converges in a single iteration
* but costs $(N L)^{3}$ to compute
* L and U do not preserve sparsity pattern of $\mathcal{M} \mathcal{M}^{T}$.

Incomplete Cholesky Decomposition

* Insist L and U have sparsity pattern of $\mathcal{M} \mathcal{M}^{T}$.
* $(N L)^{1}$
* Good, but not good enough.
* Same sort of blow-up of iteration number as with $t=0$ and $U=0$ conditioning at physically interesting lattice sizes, temperature, interaction strengths.

Improving Incomplete Cholesky

* Bai and Yamazaki introduce "drop tolerance", a control parameter to allow a somewhat larger number of fill-ins of triangular matrices than in original $\mathcal{M} \mathcal{M}^{T}$.
* Original Incomplete Cholesky: drop tolerance $\approx 10^{-2}-10^{-3}$.
* Observe eigenvalues of conditioned matrix collapse better and better on the unit circle $|\lambda|=1$ in the complex plane.

Improving Incomplete Cholesky

* Detail of first quadrant of previous distribution.

Scaling with Inverse Temperature

* Number of iterations is only weakly growing with L (roughly $L^{4 / 3}$)
* Entire algorithm will scale linearly with inverse temperature.

Scaling with Spatial Size

* Number of iterations is only weakly growing with N
* Entire algorithm will scale linearly with spatial size

Scaling with Interaction Strength

* Number of iterations is grows with U (as expected)
* Simulations about four times as expensive at $U=8$ than at $U=4$.

Conclusions

* Have constructed a robust conditioner for matrices arising in determinant Quantum Monte Carlo simulations.
* ITR crucial: Fostered computer science/physics interaction.

Future

* Implement in Full QMC code
* Investigate parallelization
* Look at quadratic form instead of full vector
* Address analogous issues in "dynamical mean field theory" simulations with many orbitals.

