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ITR Significance

* Example of interplay between computer science/applied

mathematics and an important materials theory problem

* Addressing linear algebra problem at center of

Quantum Monte Carlo for lattice fermion models

Materials Science Objective

Applications to Correlated Electron Models:

* Hubbard Hamiltonian

* Periodic Anderson Hamiltonian

* Impurity solvers in Dynamical Mean Field Theory

Applications to Physics of Materials with Strongly Correlated Bands:

* Magnetism

* Metal-Insulator Transitions



Classical Monte Carlo

Energy of set of degrees of freedom xi is local:

E =
N∑
i

xi
∑

j ∈N (i)
κij xj

xi couples only to xj only in some neighborhood N (i).

Suggest change xi → x ′
i . Need to evaluate

e−βE ′
/e−βE = e−β∆E β = 1/T

Since N (i). is independent of system size, so is time to update xi.

CONCLUSION:

Time to do update all degrees of freedom is linear in the lattice size.



Quantum Monte Carlo

Classical Boltzmann weight, an exponential of a number, E,

becomes the exponential of an operator, H :

e−βE → e−βĤ

Express this as a path integral.

Extra “imaginary time” dimension of extent β = 1/T .

* If Ĥ is local, time is still

linear in spatial lattice size.

* Cost is only extra dimension

of lattice, a factor ∝ 1/T .

This works for quantum spins

and bosons (unfrustrated lattices).

But, “sign problem” for fermions.

If electron world lines exchange,

the contribution to partition

function is negative.



Solution: Eliminate fermion operators with a “Hubbard-Stratonovich”

transformation. This introduces classical variables x(i, τ ) living on

space-time lattice. Replace

e−βE → detM(x)

M is a matrix of dimension NL where N is the spatial lattice size and

L is proportional to the inverse temperature β = 1/T .

To do the simulation one needs to compute the ratio of the determinant

of M before and after a monte carlo move x → x′.

detM(x′)/detM(x)

* CPU time ∝ (NL)3 to update one x(i, τ ).

* Time to sweep entire lattice ∝ (NL)4.

* Take advantage of special structure of M and locality of Ĥ

to reduce scaling to N 3 L.

Bl = sparse dimension

N matrices.

I = dimension N

identity matrix.

M=



Present Simulations

N= 10x10=100 (2-d lattice)

L =100 (to reach low temperature)

Sweeps = 104 (monte carlo averaging)

Time ∝ 102 1003 100 104 / 109 ≈ 105 seconds

prefactor N 3 L sweeps / clock speed one day

Goal

3-d lattices (or larger 2-d lattices)

N=10x10x10 = 103

Time ≈ 108 seconds



Linear Scaling Algorithm

Multidimensional Gaussian Integral

∫
dΦ e−ΦT AΦ ∝ (detA)−

1
2

A : a real symmetric matrix

Φ : a vector

Recasting,

∫
dΦ e−ΦT (MMT )−1 Φ ∝ detM

Quantum Monte Carlo

∫
dx

∫
dΦe−ΦT (MMT )−1Φ ∝ detM

Integrate over both

* x(i, τ ): Classical Hubbard-Stratonovich variables introduced

to eliminate fermion interactions.

* Φ(i, τ ): Variables which replace determinant by Gaussian integral.

* Entries in M depend on x(i, τ )



Linear Scaling

Updating Φ in order NL is trivial:

Φ = MR

R : a vector of independent Gaussian random numbers

Recall M is sparse.

Updating x → x + δx requires computation of

δ ( ΦT (MMT )−1 Φ ) = ΦT (MMT )−1δ(MMT )−1 (MMT )−1 Φ

Need Iterative Solver for (MMT )−1Φ

M and MT are sparse: multiplication on a vector is NL.

But they are poorly conditioned!

* Conjugate Gradient iteration number grows rapidly with N and L



Conditioning

Use (analytically known) matrix inverse in certain physical limits:

U = 0 electron-electron interactions are zero

t = 0 electron kinetic energy is zero

Hubbard Hamiltonian

H = −t
∑
〈ij〉σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓



Eigenspectrum on Noninteracting Electrons

Special pattern of eigenvalues

comes from structure of matrix.



Effect of Conditioning

This should have been an easy case:

Small lattice (16 sites)

Weak coupling

But iteration number grows linearly with system size NL.

Incomplete Cholesky is okay?



Effect of Conditioning

Somewhat more realistic case:

Still Small lattice (16 sites)

Moderate coupling (strong enough to see magnetic ordering)



U = 0 Conditioning

Eigenvalue spectrum worsened



U = 0 Conditioning

Entire spectrum



Cholesky Decomposition

MMT = L D U

lower diagonal upper

triangular triangular

U−1D−1L−1 is exact inverse of MMT .

* conjugate gradient converges in a single iteration

* but costs (NL)3 to compute

* L and U do not preserve sparsity pattern of MMT .

Incomplete Cholesky Decomposition

* Insist L and U have sparsity pattern of MMT .

* (NL)1

* Good, but not good enough.

* Same sort of blow-up of iteration number as with t = 0 and U = 0

conditioning at physically interesting lattice sizes, temperature,

interaction strengths.



Improving Incomplete Cholesky

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Real(Eigen)

Im
ag

(E
ig

en
)

Eigenvalue distribution; Nx=Ny=8, L=40, U=6.

Drop Tolerance=1e−3
Drop Tolerance=4e−4
Drop Tolerance=1e−4

* Bai and Yamazaki introduce “drop tolerance”, a control parameter

to allow a somewhat larger number of fill-ins of triangular matrices

than in original MMT .

* Original Incomplete Cholesky: drop tolerance ≈ 10−2 – 10−3.

* Observe eigenvalues of conditioned matrix collapse better and

better on the unit circle |λ| = 1 in the complex plane.



Improving Incomplete Cholesky
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* Detail of first quadrant of previous distribution.



Scaling with Inverse Temperature
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* Number of iterations is only weakly growing with L (roughly L4/3)

* Entire algorithm will scale linearly with inverse temperature.



Scaling with Spatial Size
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* Number of iterations is only weakly growing with N

* Entire algorithm will scale linearly with spatial size



Scaling with Interaction Strength
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* Number of iterations is grows with U (as expected)

* Simulations about four times as expensive at U = 8 than at U = 4.



Conclusions

* Have constructed a robust conditioner for matrices arising in

determinant Quantum Monte Carlo simulations.

* ITR crucial: Fostered computer science/physics interaction.

Future

* Implement in Full QMC code

* Investigate parallelization

* Look at quadratic form instead of full vector

* Address analogous issues in “dynamical mean field theory”

simulations with many orbitals.


