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ITR Significance

* Example of interplay between computer science/applied
mathematics and an important materials theory problem
* Addressing linear algebra problem at center of

Quantum Monte Carlo for lattice fermion models

Materials Science Objective

Applications to Correlated Electron Models:
* Hubbard Hamiltonian
* Periodic Anderson Hamiltonian

* Impurity solvers in Dynamical Mean Field Theory

Applications to Physics of Materials with Strongly Correlated Bands:
* Magnetism

* Metal-Insulator Transitions



Classical Monte Carlo

Energy of set of degrees of freedom x; is local:
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x; couples only to x; only in some neighborhood N (7).
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Suggest change x; — x/. Need to evaluate
e I e~ 0F = ¢ OAE B=1/T

Since N (7). is independent of system size, so is time to update x;.

CONCLUSION:

Time to do update all degrees of freedom is linear in the lattice size.



Quantum Monte Carlo

Classical Boltzmann weight, an exponential of a number, F/,

becomes the exponential of an operator, H:
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Express this as a path integral.

Extra “imaginary time” dimension of extent 3 = 1/T.

If H is local, time is still

linear in spatial lattice size.

Cost is only extra dimension

of lattice, a factor oc 1/T.
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This works for quantum spins

and bosons (unfrustrated lattices).
But, “sign problem” for fermions.
If electron world lines exchange,
the contribution to partition

function is negative.



Solution: Eliminate fermion operators with a “Hubbard-Stratonovich”
transformation. This introduces classical variables x(i,7) living on
space-time lattice. Replace

e PE — det M(x)

M is a matrix of dimension N L where NV is the spatial lattice size and
L is proportional to the inverse temperature g = 1/T.

To do the simulation one needs to compute the ratio of the determinant
of M before and after a monte carlo move x — 2’

det M (z") /det M ()

* CPU time o< (NL)? to update one z(i, 7).

* Time to sweep entire lattice oc (N )",

* Take advantage of special structure of M and locality of H
to reduce scaling to N° L.

B, |
B, |
B; = sparse dimension
B, |
N matrices. M
I = dimension NV B, '

identity matrix.




Present Simulations

N= 10x10=100 (2-d lattice)
L. =100 (to reach low temperature)
Sweeps = 104 (monte carlo averaging)

Time oc 10> 100* 100 10* / 10° ~ 10° seconds

. +9
prefactor ~ N? L sweeps / clock speed one day

Goal

3-d lattices (or larger 2-d lattices)
N=10x10x10 = 10°

Time ~ 10% seconds



Linear Scaling Algorithm

Multidimensional Gaussian Integral

DO =

[ dde® A? o (detA)

A areal symmetric matrix

d . a vector

Recasting,

/ dP e_q)T (MMmT)~l e x detM

Quantum Monte Carlo

/ da:/ d@e_q)T(MMT)_lq) x detM

Integrate over both
* (i, 7): Classical Hubbard-Stratonovich variables introduced

to eliminate fermion interactions.

* ®(4,7): Variables which replace determinant by Gaussian integral.

* Entries in M depend on z(i, 7)



Linear Scaling

Updating ® in order N L is trivial:

b =MR

R : a vector of independent Gaussian random numbers

Recall M is sparse.

Updating © — x + dx requires computation of

§(dT (MM D) = oF (MMDHY TS MMy H MM

Need Iterative Solver for (MM?)~1d
M and M7 are sparse: multiplication on a vector is N L.

But they are poorly conditioned!

* Conjugate Gradient iteration number grows rapidly with N and L



Conditioning
Use (analytically known) matrix inverse in certain physical limits:

U=0 electron-electron interactions are zero

t=0 electron kinetic energy is zero

Hubbard Hamiltonian

H = —t % (lyCio + ChCin) + U X nipny
1))0 1



Eigenspectrum on Noninteracting Electrons
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Re(eigenvalue)

O no preconditioning
® U=0 preconditioning

Special pattern of eigenvalues

comes from structure of matrix.




Effect of Conditioning

N=4x4 U=W/8
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This should have been an easy case:

Small lattice (16 sites)
Weak coupling
But iteration number grows linearly with system size N L.

Incomplete Cholesky is okay?



Effect of Conditioning

N=4x4 U=3W/8
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Somewhat more realistic case:

Still Small lattice (16 sites)

Moderate coupling (strong enough to see magnetic ordering)



U =0 Conditioning
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Im(eigenvalue)

Re(eigenvalue)

O no preconditioning
® U=0 preconditioning

Eigenvalue spectrum worsened



Im(eigenvalue)

U =0 Conditioning

i . U=8 [3=8 ;

- . -

10 (l) ll() 210 ' 310 410 510
Re(eigenvalue)

O no preconditioning
® U=0 preconditioning

Entire spectrum



Cholesky Decomposition

MM = L D U

lower diagonal upper
triangular triangular

UL1D1L-1is exact inverse of MM,

* conjugate gradient converges in a single iteration
* but costs (NL)? to compute
* L and U do not preserve sparsity pattern of MM?.

Incomplete Cholesky Decomposition

* Insist L and U have sparsity pattern of MM?.

* (NL)!

* Good, but not good enough.

* Same sort of blow-up of iteration number as with ¢t = 0 and U = 0
conditioning at physically interesting lattice sizes, temperature,

interaction strengths.



Improving Incomplete Cholesky

Eigenvalue distribution; Nx=Ny=8, L=40, U=6.
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* Bai and Yamazaki introduce “drop tolerance”, a control parameter
to allow a somewhat larger number of fill-ins of triangular matrices
than in original MM?.

* Original Incomplete Cholesky: drop tolerance ~ 1072 — 1073,

* Observe eigenvalues of conditioned matrix collapse better and

better on the unit circle |A| = 1 in the complex plane.



Improving Incomplete Cholesky

Eigenvalue distribution; Nx=Ny=8, L=40, U=6.
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* Detail of first quadrant of previous distribution.



Scaling with Inverse Temperature

Number of iterations in PCG vs L
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* Number of iterations is only weakly growing with L (roughly L*/?)

* Entire algorithm will scale linearly with inverse temperature.



Scaling with Spatial Size

Number of iterations in PCG vs Nx=Ny
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* Number of iterations is only weakly growing with N

* Entire algorithm will scale linearly with spatial size



Scaling with Interaction Strength

Number of iterations in PCG vs U
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Number of iterations is grows with U (as expected)

Simulations about four times as expensive at U = 8 than at U = 4.



Conclusions

* Have constructed a robust conditioner for matrices arising in
determinant Quantum Monte Carlo simulations.

*ITR crucial: Fostered computer science/physics interaction.

Future

* Implement in Full QMC code

* Investigate parallelization

* Look at quadratic form instead of full vector

* Address analogous issues in “dynamical mean field theory”

simulations with many orbitals.



