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Overview

Technologically or scientifically interesting alloys have multiple
components and sublattices. As a results, N-component alloys
have “complex” ordering with up to (N-1) phase transitions
and arrive at the ground-state from an infinite number of
possible high-temperature, partially-ordered phases.

Predicting the N—1 transitions, their electronic origin, and the
short-range order (SRO) and long-range order (LRO) at fixed
composition in alloys, is crucial for interpreting experiment and
for materials design. Using both classical and electronic density-
functional-theory (DFT) methods [I], a thermodynamic theory
of ordering is possible based upon electronic structure and
energetics, multiple-scattering (KKR) theory, in particular [2].

Why are alloys complex?

N-component alloys have an infinity of choices for ordering [3],
e.g., site occupations in ternary (N=3) bcc ABC, alloy with
k=(111) SRO peak has N—I (or 2) phase transitions:
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Goal

I. To improve the electronic DFT configurational averaging in
(partially) disordered alloys (originally based on the single-
site Coherent Potential Approximation) by including local,
multi-site configurational effects in “systematically exact”
manner via reciprocal-space coarse-graining concepts
developed within dynamical mean-field theory [4].
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To extend this DFT-based thermodynamic theory of
ordering to general partially-ordered states (i.e., with multi-
sublattice orderings) so as to compare directly to the k-
space short-range order measured experimentally.

3. To improve the mean-field used within the exact classical
DFT. In particular, to correct the atomic self-energies by
summing all cyclic diagrams to O(1/Z), where Z is the
number of neighbor. These correction maintain required
intensity sum rules (violated in most mean-field theories)
and renormalize correlation in k-dependent manner.

Thermodynamic Theory of Ordering from
Combined Classical and Electronic DFT

The thermodynamic average Grand Potential of an alloy can
be written in terms of (non-)interaction contributions as:
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Diffuse scattering experiments on a disordered state reveal the
chemical ordering fluctuations (or SRO), analogous to “phonon
modes”, which are unstable but potentially long-lived.

We study the linear-response to ordering about the (partial)
disordered state, since the second-order terms give the SRO.
The equations for SRO pair-correlations are EXACT!
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Approximations yield tractable solution, however, but these
also lead to errors — in temperature scale (say, from using
mean-field thermodynamics) or in electronic energetics (say,

from using single-site, mean-field averaging).

Exact Electronic DFT Approach

The Gibbs’ relation of particle number and chemical potential
permits, in principle, a means to construct a electronic DFT for
the (partially) disordered state. That is, with particle number
related to the integrated (DOS) density of state N(E;u),
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Given an analytic expression of the configurationally average
N(E;u), we may obtain an analytic expression for the grand
potential for disordered, partially ordered, or fully ordered
(Mermin’s theorem) state.

I. Improved Electronic Configurational
Averaging

In the single-site CPA, we obtain [2]
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the basis for KKR-CPA total energy calculations in use today,
and has been implemented for homogenous disordered case [3]
in ternary metallic alloys.

Recent coarse-graining concepts developed for Dynamical
Mean-Field Theory [4] provides a means to go beyond single-
site CPA [5] averaging over local, multi-site clusters compatible
with point-group symmetry of the underlying Bravais lattice.
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Using a cluster-based average Non-Local CPA [5], we have
derived an analytic expression for the <N>_, ., which requires
numerical implementation and testing.

The original theory [5] has been implemented for tested the
DOS for |-D square-well potential, and not the integrated
DOS. We are implementing the NL-CPA within our existing
KKR-CPA (3-D) code, which will then be a basis for SRO
calculations.

2. Extension to Multisublattice Case

We have extend the KKR-CPA (single-site) theory for the
multicomponent alloy. The above equations generalize with
two more superscripts (1,J) that designate the interacting
sublattices having species o and f3, except that the Brillouin
zone is that given by the partially-ordered symmetry.

However, the mean-field thermodynamic approximation is
potentially more severe for multi-component case. Here we
present the calculated SRO and correlation energy given by
S@(q) for fully-disordered bcc Cu,AuZn.
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Results

* Correlation energy leads to SRO peaks at k=(I 1) or H-point
* Secondary SRO at k=(0.5, 0.5,0.5) or P-point.

* These indicated high-T B2 and low-T Heulser transitions, as is
observed (unpublished).

* Temperature scale is 50% in error.

We have employed the so-called Onsager corrections A, so
intensity is conserved. Such correction provide good
temperature scale in binary systems driven by formation
energy, the temperature scale (e.g., fcc PdRh we obtained 1080
K and observed is 1050 K).

Potential Problem

For a ternary, for example, there are 3 pair-correlations that
together must conserve intensity, potentially requiring k-
dependent renormalization of intensities to get instability
temperatures more correct. Need to improve mean-field
thermodyamics to make still tractable with better T scale.

3. Using Better Thermodynamic Mean-
Field Approximations for Improved T.

We are extending the KKR-CPA-based SRO formula to
improve the self-energies correction by summing all cyclic
diagrams to O(1/Z), where Z is the number of neighbor. These
correction maintain required intensity sum rules (as with
mean-spherical model and Onsager) but renormalize the pair-
correlation in k-dependent manner. Recently these corrections
have been called the Ring approximation [7], where they have
been tested for lattice-gas and near-neighbor Ising model.

Example of the effect of summing cyclic diagrams [7]:
I-D Ising model (T in units of kT/4))

exact MFT MFT+cyclic
0.0 112 0.22
2-D square lattice Ising model (T_ in units of kT/4))
exact MFT MFT+cyclic
0.57 1.0 0.62
3-D fec Ising model (T, in units of kT/4))
“exact” (MC) MFT MFT+cyclic

2.45 30 2.41
We are currently testing a multicomponent version of this
approach to assess its validity and usefulness.

Future

» Complete and test KKR-NL-CPA for electronic-structure.

* Test “cyclic” corrections for multi-component Ising case.

* Validate the analyticity of the derived analytic expression for
the NL-CPA integrated DOS, which is required for
thermodynamics (probably by |1-D model Hamiltonian).

» Combine the three for NL-CPA calculations of SRO.

* Address numerical issues required to implement either CPA
or NL-CPA into usable and extensible code.
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