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European Commision/National Science Foundation 
Workshop on “Computational Methods in Materials 
Science.”  San Francisco, April 15 and 16.  Report:

 http://www-itamit-test.dtc.umn.edu/nsfreport.php
Coordination Meeting:  August 6 and 7 (Science, 
Industrial and International Boards)

Software link:
http://www.itamit.dtc.umn.edu/software.html

Outreach and Education Activities

Visitors:  Leeor Kronik 
and Adi Makmal from the 
Weizmann Institute

Summer Intern Program:  
Eric Lindgren

Carleton College
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Marié López del Puerto

Chemical Engineering, Chemical Physics, Materials Science, Physics, 
Scientific Computation and Computer Science



  

One of the greatest 
accomplishments of 
humankind: Changing 
silicon from beach sand to 
the the stuff of 
supercomputers



  

Heading toward the nanoscale.....



  

Intel is now a “nanotechnology company.”



  

Examples of Materials of Interest to Intel.... 

One acre of silicon wafers is worth one billion dollars.--F.  Seitz



  

Research Programs
Dielectrics:  Defects in silica
Clusters and quantum dots: 
Optical, structural and magnetic properties

POSTERS

Molecular electronics
 Spintronic materials:

- Co1-xFexS2  half metals  
- Growth of Mn:Ge Surfaces
- Mn:ZnSe Quantum dots 

High performance algorithms

Surfaces: Adsorption, defects and growth
Liquids: Microstructure, growth
Organic semiconductors and nanotubes

Web Site



  

Molecular Electronics

•   Developed a new approach based on an ab initio 
scattering-state method

•   Applied to nonlinear I-V studies of molecular junctions, 
atomic wires, nanotubes

(Electron transport through single molecules,
atomic wires, …)

Son, Choi, Ihm, Cohen, and Louie 



  

First-principles Scattering-State Approach to Molecular Electronic Devices 

† 

I(V ) =
2e
h

T(E,V )
m R

mL

Ú dE



  

I-V Characteristics of Electron Transport through a Tour
(polyphenylene-based chains)  Molecule

•   Large negative differenential resistance
•   Strong sensitivity to contact geometry



  

Search for materials 
with 100% polarization:

† 

P =
n↑ - nØ

n↑ + nØ

=1

Spintronics



  

Engineering a half metal ferromagntic 
material – Co1-xFexS2

• CoS2 Metallic ferromagnet

• FeS2 Diamagnetic semiconductor

• Co1-xFexS2 Half-Metallic Ferromagnet?

EF + =

E E E

EF
EF



    x = 0.0        0.125 0.25

   P = -70%       + 40 %          +100 %

Electronic structure calculations
• Pseudopotentials, plane-wave expansion, and the LSDA 

Wentzcovitch et al.



  

Spintronic materials are often made of dilute magnetic 
semiconductors alloyed with a magnetic element. These 
alloys are both ferromagnetic   and semiconducting, 
opening the door to exciting "spintronics" applications - 
devices based on both electron charge and spin. 

Magnetic Dilute
Magnetic Non-magnetic



  

MnGaN: Role of Ga 3d States

Ga 3d and N 2s states do interact, but effect on band gap energy is 
minimal 

Dashed line with 
3d state treated 
explicitly.

Key results:
-Valence band not 
polarized. 
-State in the gap 
“half-metallic”. 
-Minority 
polarization in 
conduction band 
states.

Kronik, Jain and Chelikowsky



  

• Growth mechanisms, important but largely 
unexplored.

• Use pseudopotential-density functional theory 
to examine the growth of Mn on Ge surfaces

• Low Mn doses on Ge (100) initiates novel 
subsurface growth whereas Mn on the (111) 
surface can diffuse into the bulk via interstitial 
sites.

Growth Modes of Mn on 
Ge (100) and Ge (111) Surfaces

Kaxiras et al. 



  

(100) Ge Surface



  

(111) Ge Surface



  

Quantum Dots:  Optical and Magnetic Properties

 Examine the role of quantum confinement
- Profound effect on the optical properties of 

nanocrystal

Confinement should also have strong effect on spin-spin 
exchange.

- Study and manipulate a single spin in a 
semiconductor box.

- Serve as a model for spintronic materials.



Structure of ZnmSem clusters

Zn3Se3
Zn10Se10

Zn19Se19

Zn41Se41
Zn171Se171 Huang and Chelikowsky



MnZn18Se19 quantum dots

Site 1 Site 2

Site 2Site 1

●  Mn impurity in the ZnSe quantum dot has a high spin state
●  The impurity levels are not sensitive to the impurity position in the cluster  



Impurity state in the MnZn18Se19 
quantum dot

Isosurface of charge density in 
the vicinity of  the Mn  atom

Isosurface of summation of wave 
function square of impurity levels

●  Bonding between Mn and Se atoms 
●  Impurity levels are highly localized around Mn



Research on Numerical Algorithms for Materials

Institute for the Theory of Advanced Materials in
Information Technology

Yousef Saad

University of Minnesota

Department of Computer Science and Engineering

NSF Division of Materials Research ITR Computational Workshop

UIUC, June 17-19, 2004
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Numerical problems in DFT

II Original Schr ödinger equation exceedingly complex.

II Density Functional Theory + Local Density Approximation + Pseu-

dopotentials lead to “one-electron” model → nonlinear eigenvalue

problem

Main issues of interest:

II Solve the eigenvalue problem efficiently [specificity: large num-

ber of eigenvalues]

II Find alternatives [avoid eigenvectors, eigenvalues]

II Solve various related computational problems [TDDFT, computa-

tion of dielectric matrix, ...]

NSF/ITR Materials Workshop - June 19/ 04
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II Kohn-Sham equation[
− h2

2m
∇2 + Vtot[ρ(r)]

]
Ψ(r) = EΨ(r)

With

Vtot = Vion + VH + Vxc

• VH = Hartree potential II Local

• Vxc = Exchange & Correlation potential II Local

• Vion = Ionic potential II Non-Local

II Electron Density:

ρ(r) = ∑occup
i |Ψi(r)|2

II Above problem can be viewed as a nonlinear eigenvalue problem.

NSF/ITR Materials Workshop - June 19/ 04
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Work on eigenvalue algorithms

Current focus:

(1) AMLS and related methods

(2) Block versions of restarted Lanczos

Motivation:

(1) Excellent success of AMLS in structural engineering.

Similarity: large number of eigenvectors to compute

(2) Standard packages (ARPACK) do not easily take advan-

tage of self-consistent loop. Also: not specialized for large

number of eigenvalues.

NSF/ITR Materials Workshop - June 19/ 04
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Block-Lanczos – advantages

II Basic principle of the Block Lanczos algorithm: operate on block

of b columns instead of only one column as in standard Lanczos.

Advantages:

II Can exploit a block of several initial guesses of eigenvectors

II Deals well with clustered or multiple (’degenerate’) eigenvalues

II Can yield better cache performance (BLAS 3 instead of BLAS 2)

Issues:

II How to implement implicit restarts?

II Important to dynamically adapt block size

NSF/ITR Materials Workshop - June 19/ 04
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Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let A ∈ Cn×n, Hermitian

�

�1 �2

→ A =


B E

E∗ C

 B ∈ C(n−p)×(n−p)

Note: B is block-diagonal

Main Reference:

J. K. BENNIGHOF AND R. B. LEHOUCQ, An automated multilevel sub-

structuring method for eigenspace computation in linear elastody-

namics , To appear in SIAM. J. Sci. Comput.
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Basic idea of the method for two levels

First step: eliminate the blocks E,E∗.

U =


I −B−1E

0 I

 → U∗AU =


B 0

0 S

 ; S = C − E∗B−1E.

Original problem is equivalent to U∗AUu = λU∗Uu →
B 0

0 S

 u = λ


I −B−1E

−E∗B−1 MS

 u ;MS = I + E∗B−2E

Second step: neglect the coupling in right-hand side matrix:

Bv = µ v

Sw = η MSw.

II Compute a few of the smallest engenvalues of the above problem.

NSF/ITR Materials Workshop - June 19/ 04
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Third step: Build a ’good’ subspace to approximate to eigenfunc-

tions of original problem. The basis used for this projection is of the

form v̂i =
vi
0

 i = 1, . . . ,mB; ŵj =


0

wj

 j = 1, . . . ,mS

 ,

where mB < (n− p) and mS < p.

Then use this subspace for a Rayleigh-Ritz projection applied to
B 0

0 S



uB

uS

 = λ


I −B−1E

−E∗B−1 MS



uB

uS


(Note: not the original problem.)

Final step: exploit recursion –

NOTE: algorithm does only one shot of descent - ascent (no iterative

improvement).

NSF/ITR Materials Workshop - June 19/ 04
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Eigenvalue-free DFT

Recall:

ρ(r) =
occ∑
j=1

|Ψj(r)|2

Main observation: The eigenvectors are not really needed. When

ψj(r) is discretized w.r.t. r then the ρ(ri) ≡ ρii is the diagonal entry

of the ‘functional density matrix’

P (r, r′) =
occ∑
j=1

Ψj(r)Ψj(r′) or P = V V ∗, V = [ψ1, . . . , ψocc]

II ‘Order n methods’ based on finding an approximation to P . Spar-

sity of P (in specific bases) is exploited.

NSF/ITR Materials Workshop - June 19/ 04
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Approaches

P = f(H)

where f is a step function. Approximate f by, e.g., a polynomial

II Result: can obtain columns of P inexpensively via:

Pej ≈ pk(H)ej

II Exploit sparsity of P (especially in planewave basis)- ideas of

“probing” allow to compute several columns of P at once.

II Statistical approach: work of Hutchinson for estimating trace of a

matrix [used in image processing] adapted to estimating diagonals.

II Many variants currently being investigated

NSF/ITR Materials Workshop - June 19/ 04
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TDLDA: Use of planewave bases and FFT

Recall :

Kij,kl =
∫
Ω

Ψi(r)Ψ̄j(r)
dVxc (r)

dρ(r)
+ Φij(r)

 Ψk(r)Ψ̄l(r)dr.

With 4Φij(r) = −4πΨiΨ̄j(r).

ij

kl

One Poisson solve for every ij
One Integration for every kl

ijK[  ,   ]kl

Coupling Matrix K

11



II Previous work [our group] : work in real space + use CG to solve

Poisson’s equation.

II Real space approach does not exploit specific features of the

physics when solving Poisson’s equation.

II Idea is to use FFTs: (In essence: Use “fast Poisson solvers”)

II Expand each wavefunction in planewave basis:

Ψj(r) =
∑
l
ψjl exp i(l.r) → Φij(r) = 4π

∑
(l,l′)l6=l′

ψil ψ̄
j
l′

‖l − l′‖2
ei(l−l′).r.

II Many improvements can now be made. For example, in practice

meaningful ’support’ of ψiψj is small

F(ΨiΨ̄j)(k) =
∑
r
eik.r(ΨiΨ̄j)(r) =

∑
r ∈ Supp (ΨiΨ̄j)

eik.r(ΨiΨ̄j)(r).

NSF/ITR Materials Workshop - June 19/ 04
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Results

II Compare Real space code with planewave code for Si34H36
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NSF/ITR Materials Workshop - June 19/ 04
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II Compare times for Real space code and planewave code [for

Si34H36]

Method Wall-Clock Time (hours)

Real Space Code 15:30

PW: Initial Implementation 3:30

PW: Optimized load balancing 2:30

Wall-clock time of the parallel TDLDA code using Fourier space and

Real Space for the Si34H36 test case running on 8 processors

Note: Gain a factor of 5-6 wrt to optimized version of TDLDA code.

Compound with another factor of 3-4 from original to optimized real-

space code → 15 to 24 faster than [Vasiliev et al. 2000]

II More to come!

NSF/ITR Materials Workshop - June 19/ 04
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