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Solving Sequences of Linear Systems
In many simulations in science and engineering we must solve a large 
sequence of closely related linear systems. In some cases only the right 
hand side changes, in others both the matrix and right hand side change, 
and in yet others, only the matrix changes. Applications range from the 
approximation of Green’s functions in electronic structure, simulation of 
crack propagation in solids and structures, to fatigue, and nonlinear 
optimization problems in image restoration. 

Here we adapt techniques we developed for fast and robust linear solvers 
for a single linear system to sequences of linear systems.
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Solving Sequences of Linear Systems

1. Linear Solvers

Minimizing Loss of Orthogonality (Sturler’99)

GCRODR (Parks, Sturler, et al. ’04)

2. KKR Electronic-Structure Method

Diffuse Optical Tomography

Results for Tomography

Additional Applications 

Conclusions

• GMRES is the most robust method for linear systems, but becomes very 
expensive if convergence is not rapid.

• Restarting often leads to significantly slower convergence
• So, restart while recycling selected subspace from previous steps

– Select recycle space to minimize loss of orthogonality
– Select recycle space to approximate invariant subspace

• Often leads to convergence close to optimal but with reduced cost.
• If linear system changes slowly we can recycle selected subspace for 

subsequent linear system and improve convergence from the start
• Allows the method to learn while going from one system to the next, 

dealing effectively with slowly changing systems

Consider the following bound on the residual after m iterations

If condition number of U not too large, reduce bound by removing eigenvalues
that make                            large. 

These are often, but not always, small eigenvalues. Remove these by 
augmenting Krylov space with corresponding approximate eigenvectors.

For strongly nonhermitian problems this approach is dubious.

Implemented in GMRESDR (Morgan’03). This method cannot use recycling; 
hence, alternative proposed based on GCRO (Sturler’96), GCRODR.
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KKR-CPA code in k-space and r-space is an O(N1+ε) DFT - Green’s 
Function method with: 

• Screened structure constants (sparse matrices)
• Sparse matrix techniques (memory & size)
• Iterative inversion techniques (size)
• Parallel computation on E-points and/or N atoms
• Coherent-potential approximation for chemical disorder

Current scaling behavior (in metals)
For SCF Total Energy:    O(N1+ε) ε1 ˜  0.1-0.5   
For DOS calculations:     O(N1+ε) ε2 ˜  0.5-1.0 
For Bands: O(N2+ε) ε3(k) ˜  0.5-1.0

Memory scales as NM(L+1)4, with M atoms in screening cluster (2-6 n.n. 
shells) and maximum angular momentum, L (2-4)

Scaling of Solution Time
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Scaling for 54 to 2000 atoms (Cu) for complex energy 
near the real axis.

Time for largest two ensembles can be improved using 
larger subspace (to do).

Gives much better scaling than direct methods.

Subspace recycling will improve solution time further.

Solution of 16 right hand sides corresponding to a 
single atom (54 atoms) using subspace recycling.

Each separate curve indicates convergence for 1 rhs.

Note the improved convergence rate for later right 
hand sides (roughly factor two).

Crack Propagation

Results with and without Subspace Recycling

Number of matrix-vector products to solve linear system per loading step 
with and without subspace recycling for 150 consecutive loading steps.

Systems are symmetric positive definite, with IC(0) preconditioner

Collaboration with Misha Kilmer (Tufts University)

Reconstruct 3D absorption and scattering information by matching
solutions from a parameterized model to measured data.

Gauss-Newton with line search for nonlinear least squares.

Each nonlinear step requires the solution of                    for 
multiple shifts and right hand sides. Each nonlinear step the matrix          
changes.

Carefully tune the subspace to be recycled to the phases of the nonlinear 
optimization algorithm.

Recycle both invariant subspaces and selected subspaces of previous 
solutions.
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Number of matrix-vector products to solve linear system for 40 
nonlinear steps for sources 1and 4 using subspace recycling compared 
with MINRES using an appropriate previous solution as starting guess.

After source 4, other sources have number of matrix-vector products 
similar to source 4. All shifts are solved with a single Krylov subspace.

Several other applications are planned:

• Topology optimization for tailoring functionally graded materials and 
structures (with Glaucio Paulino, CEE),

• Computational Electromagnetics (with Eric Michielsen, ECE),

• Reduce occasional extreme ill-conditioning in multiple spawning method 
(Todd Martinez, Chemistry)

Large sequences of linear systems ubiquitous in computational science and 
engineering.

Obtained significant improvement in convergence rate and solution time.

Developed for use in electronic-structures (KKR) code, but useful in many other 
applications. Effect on scalability in KKR must be evaluated.

Combined with block method to increase versatility. Testing for optimal 
combination is future work (application dependent).

Hijacking Game Consoles

Scientific computing began in mainframe-based centralized environments. 
These were replaced by workstations and finally over the last decade by 
“Beowulf” clusters of commodity computers.  However, commodity computers, 
such as Intel and AMD-based machines, are general purpose machines and not 
necessarily ideal for materials simulation.

Recently, game consoles have begun to appear as a possible alternative where 
the economies of scale are increasingly favorable while the target applications 
are very similar to materials simulations.

• Utilizing clusters of standard PCs for 
high performance computing

• Economy of Scale – PC parts are built 
in large number so they cost less than 
proprietary high performance computers

CommodityCommodity--OffOff--TheThe--Shelf (COTS) ComputingShelf (COTS) Computing

• Ease of Upgrade – Backward compatibility is a must in the PC 
market, so the COTS strategy ensures easy upgrades without lengthy 
and difficult porting of codes.

CommodityCommodity--OffOff--TheThe--ToyToy--Shelf (COTTS) ComputingShelf (COTTS) Computing

• Utilizing clusters of video game consoles for 
high performance computing

• Economy of Scale – Game consoles are 
often sold near cost with profits coming from 
subsequent game software sales.  

• Surprisingly, there is also a disparity in sales volume. Sony sold 60M PS2 
consoles in 2002. Compaq, Dell and IBM together sold only 50M PCs in 
the same time.

• Performance -- Modern video games involve the solution of differential 
equations (game physics) and linear algebra (graphic manipulations).

Challenges  

• Complexity of Hardware – Game hardware is complex and 
proprietary just like a commercial workstation.

• Absence of software tools and libraries (e.g. BLAS)

• Limited Lifespan of Product – Companies only release new game 
consoles every several years, unlike PC hardware which is updated 
continuously.

• CPU is analogous to a typical PC processor

• VPUs are capable of 4 floating point multiply/accumulates per clock 
cycle 

• VPU0 can act as a coprocessor to the CPU  (‘macromode’) or work 
independently (‘micromode’)

• VPU1 only runs in micromode

• When in micromode VPUs run ‘microprograms’ of two simultaneous 
instruction streams 

Sony Sony PlaystationPlaystation 2 (PS2) Architecture2 (PS2) Architecture

Potential PerformancePotential Performance

$2,000 $2,000 $500 Price (when first released)

102425632Memory (MB)

64008002400Data Transfer Rate (MB/s)

6464128Bus Width (bits)

800100150System Bus Clock (MHz)

640012006000MFLOPS

2220Floating Point Ops/Clock

3200600300Processor Clock (MHz)

P4-3200PIII-600PS2

Performance of Game Consoles

Theoretical peak performance and actual performance can be very different 
things. Our preliminary work has focused on demonstrating that complex 
codes can be ported to the PS2 game console and determining what
performance levels can be achieved in practice. Recently, we have begun 
collaborating with IBM to carry this work over to the new Cell processor 
which will be the foundation for Sony’s PlayStation 3 game console. We plan 
to have codes ready to run at release, maximizing the price/performance 
advantages.

• Data transfer is a key bottleneck.  Fast transfer is possible using a 
specialized DMA, called the VIF (vector interface).

• An ATLAS-like strategy should be used to find transfer “sweet spots.”

• Both VPUs should be used in parallel to optimize performance

• No hardware support for double precision

24006000Maximum Possible:

1077.3NA1.31NoneNoDMA/VIF

609.0304.52.27NoneYesDMA/VIF

308.6154.34.48CPUYesDMA/VIF

201.0100.56.88CPUYesCPU

Data Xfer
Rate (MB/s)MFLOPSTime/s

Data Xfer
from VPUCalc?

Data Xfer
to VPU

Matrix-Vector Multiplication – VPU1 only, Micromode

Linear Algebra ResultsLinear Algebra Results

24006000Maximum Possible:
NA558.54.95NoneYesNone

869.4NA.53NoneNoDMA/VIF

83.0498.25.55NoneYesDMA/VIF

60.6121.222.81CPUYesDMA/VIF

Data Xfer
Rate 

(MB/s)MFLOPSTime/s
Data Xfer
from VPUCalc?

Data Xfer to 
VPU

Matrix-Matrix Multiplication – VPU1 only, Micromode

534.331.17.16.0time (s)

doublesingledoublesingleprecision

PS2PIII-600machine

GAMESS – 11 Steps of a Hartree-Fock Geometry Optimization of 
Butadiene – CPU only

Porting Complex CodesPorting Complex Codes

•We have ported the GAMESS code 
for quantum chemistry

•MPICH has been ported and a 
cluster of PS2s run in parallel

• When first released the Sony Playstation 2 had the potential to outperform 
the most powerful personal computers on the market in terms of FLOPS.

• Because of the nature of the game console market video game machines 
cost only a fraction of what personal computers cost.

• We have utilized the PS2’s advanced architecture to do linear algebra, 
successfully ported the GAMESS electronic structure software package to the 
PS2, and employed MPICH to distribute a computational task over a cluster 
of PS2s.

• We are applying these lessons to the new Cell processor in collaboration 
with IBM. Scientific are being ported and developed and will be ready when 
the PS3 is released.

Conclusions and Work in ProgressConclusions and Work in Progress

Results

Metal plate pulled apart at top left corner, breaking along the symmetry 
axis, which coincides with the x-axis. Along fracture line cohesive finite 
elements are used to model nonlinear response and breaking.

Thousands of loading steps are needed to model crack propagation.
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The difference is determined by canonical angles kϕ
between ( )range C  and ( )range Q . 
Force 2r  closer to 1r  by maintaining orthogonality to 
selected subspace of ( )range C , removing large kϕ . 
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