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1. How to run QMCPACK

1.1. To run it on the laptop:



On Tungsen cluster, change directory to scratch-global

  cd scratch-global
  tar xf ~/Li2.tar
  cd Li2
  

The tar file can be downloaded with wget

  wget http://cms.mcc.uiuc.edu/qmcpack/qmcss07/input/li2.tar
  tar xf li2.tar
  

We will start an interactive session using 1 node (2 processors) as

  bsub -Is -n1 -W 1:00 tcsh

Once your session starts, you can execute QMCPACK as

  qmcapp input-xml > out  

Note that your session will be terminated after an hour. Restart an interactive session with
the bsub. During the lab hours, use the interactive queue to execute small jobs.

1.1. To run it on the laptop:

  $QMCPATH/qmcapp input-xml > out  

Here, $QMCPATH is the path where QMCPACK is built, e.g., topdir/build/bin.

2. QMC optimized Slater-type orbitals

2.1. Running VMC
2.2. More on the many-body wavefunction

The first QMCPACK application is to perform VMC calculation of Li2 using an optimized

wavefunction from Umrigar et al., J. Chem. Physics 99, 2865 (1993). The main input file is
Li2.vmc.xml.

2.1. Running VMC

The main input file Li2.vmc.xml has instructions on what problem to solve and how to run
QMCPACK.

Example 1.1. Main input file to run a VMC

<?xml version="1.0"?>
<simulation>
  <project id="Li2" series="0"/>
  <application name="qmcapp" role="molecu" class="serial" version="0.2">
    QMC of Li2 molecule using Slater-type Orbitals by Umrigar et al, see
    JCP 99, 2865 (1993).  The spin configuration is (3,3).
  </application>
  <random parallel="true" seed="-1"/>
  <!-- include a file which defines the wavefunctions -->
  <include href="Li2.STO.unr.xml"/>
  <hamiltonian name="h0" type="generic" target="e">
    <pairpot name="ElecElec" type="coulomb" source="e" target="e"/>
    <pairpot name="Coulomb" type="coulomb" source="i" target="e"/>
    <pairpot name="IonIon" type="coulomb" source="i" target="i"/>
  </hamiltonian>
  <qmc method="vmc" target="e" move="walker">
    <parameter name="blocks">10</parameter>
    <parameter name="steps">10</parameter>
    <parameter name="timeStep">0.05</parameter>
    <parameter name="walkers">100</parameter>
    <parameter name="useDrift">yes</parameter>
  </qmc>
  <qmc method="vmc" target="e" move="walker">
    <parameter name="blocks">500</parameter>
    <parameter name="steps">20</parameter>
    <parameter name="timestep">0.05</parameter>
  </qmc>
</simulation>
       

DO NOT MODIFY. First line of a valid xml file.

DO NOT MODIFY. Starting a qmc simulation. See the matching ending at the end.

Define a project.

Note on a series of runs.

Include an external file which defines qmcsystem consisting of electronic and ionic
system and a trial wavefunction. See Li2.STO.unr.xml.

Define a many-body hamiltonian.

Perform a short vmc.

Perform a long vmc.

2.2. More on the many-body wavefunction



A single particle orbital of this example is expressed as a linear combination of spherical
(atomic) orbitals

!i = "I "l"m Ci
lm;I ulm (r-Rl) Ylm (#,!)

Here, the radial function u is a Slater-type orbital

u(r)=N($,p) rp e$r

with an normalization factor N and a power p. The full description of the trial wavefunction is
shown in Example 1.2

Example 1.2. Wavefunction definition for Li2

  <wavefunction name="psi0" target="e">
    <determinantset type="MO" key="STO" transform="no" source="i"> 
      <basisset> 
        <atomicBasisSet type="STO" elementType="Li" normalized="no" expandYlm="no"> 
          <basisGroup rid="R0" n="1" l="0" m="0" type="Slater"> 
            <radfunc exponent="3.579103" node="1"/> 
          </basisGroup>
          <basisGroup rid="R1" n="1" l="0" m="0" type="Slater">
            <radfunc exponent="2.338523" node="1"/>
          </basisGroup>
          <basisGroup rid="R2" n="2" l="0" m="0" type="Slater">
            <radfunc exponent="0.707563" node="2"/>
          </basisGroup>
          <basisGroup rid="R3" n="2" l="1" m="0" type="Slater">
            <radfunc exponent="0.532615" node="2"/>
          </basisGroup>
        </atomicBasisSet>
      </basisset>
      <slaterdeterminant> 
        <determinant id="updet" spin="1" size="3"> 
          <coefficient id="updetC" type="Array">
            0.606630 1.0 0.0 0.061592  0.606630  1.0 0.0 -0.061592
            0.603086 1.0 0.0 2.946e-3 -0.603086 -1.0 0.0  2.946e-3
            0.104957 0.0 1.0 0.305729  0.104957  0.0 1.0 -0.305729
          </coefficient>
        </determinant>
        <determinant id="downdet" spin="-1" size="3"> 
          <coefficient id="downdetC" type="Array">
            0.606630 1.0 0.0 0.061592  0.606630  1.0 0.0 -0.061592
            0.603086 1.0 0.0 2.946e-3 -0.603086 -1.0 0.0  2.946e-3
            0.104957 0.0 1.0 0.305729  0.104957  0.0 1.0 -0.305729
          </coefficient>
        </determinant>
      </slaterdeterminant>
    </determinantset>
  </wavefunction> 

Start of determinantset 

Start a generic basis set for the single-particle orbitals. In this example, the basis set
consists of two identical sets of atomic orbitals for each Li ion.

Start an atomic basis set for "Li".

A basisGroup represents a basis function  for a given angular
momentum configurations, l and m. The additional index n is used to distinguish
different basis sets of the same angular momenta. The radial part of the basis set ulm

can have one or more radial functors fk(r) as 

Define a radial functor fk(r).

Define a pair of Dirac determinants  This trial wavefunction has only one Slater
Determinant. However, multiple slaterdeterminants can be used [See multi determinant
example]. The default value Cd=1 is omitted.

Define a Dirac determinant for the spin-up component.

Define a matrix of Nup by Nbasis for Nup single-particle orbitals (linearly independent

orbitals). They are generally provided by QMCPACK utility programs which extract the
solutions from external QC/DFT packages. For this example, the table V are used to
generate coefficient.

Define a Dirac determinant for the spin-down component. This node is identical to the
up component.

The total basis set space will be created by expanding it according to the order of the
particles in an ionic system as listed in the Table 1.1.

Table 1.1. Relations of determinant/coefficient to the basis set

Li 1 Li 2

R1(0,0,0) R2(0,0,0) R3(1,0,0) R4(1,1,0) R1(0,0,0) R2(0,0,0) R3(1,0,0) R4(1,1,0)

0.606630 1.0 0.0 0.061592 0.606630 1.0 0.0 -0.061592

0.603086 1.0 0.0 2.946e-3 -0.603086 -1.0 0.0 2.946e-3

0.104957 0.0 1.0 0.305729 0.104957 0.0 1.0 -0.305729

3. Adding a Pade Two-Body correlation function

Starting with the QMC optimized wave function in Section 2, we are going to add correlation
functions (aka Jastrow functions) to improve the variational energy and variance.

Open Li2.vmc.xml and add a line after <include/> as



  <wavefunction name="psi0" target="e">
    <jastrow name="Jee" type="Two-Body" spin="yes" function="pade">  
      <parameter id="juu_b" name="B">0.821683</parameter> 
    </jastrow>
  </wavefunction> 

A two-body Jatrow function

is added to the trial wavefunction. The attributes jastrow/@type='Two-Body' and
jastrow/@function='pade' are used to uniquely determine what object is used to represent
the two-body Jastrow. determinantset is identitcal to the previous example.

Define a parameter B for the Pade functor  Here, the coefficient A is
ommitted, since it is set by the cusp conditions. An important attribute is
parameter/@id='juu_b' which is used later by optimization engines in Example 1.3.

and save it. Or, download the Li2.j2pade.vmc.xml.

4. How to optimize a wavefunction

Li2.j2pade.opt.xml uses optimize QMC action shown in Example 1.3 to obtain juu_b which
minimizes either variance or energy or their combination using a simple gradient-based
optimization method. More on the optimizations will be discussed in other section. The most
important element is optimize with the parameters whose IDs are registered by the
wavefunction section. This example has only one variable with ID="juu_b" for the parameter B
of a Pade functor.

Example 1.3. QMC section for optimization of Pade parameter juu_b

  <qmc method="optimize" move="pbyp">
    <parameter name="blocks">500</parameter>
    <parameter name="steps">20</parameter>
    <parameter name="timestep">0.5</parameter>
    <parameter name="walkers">100</parameter>
    <optimize> juu_b</optimize>
    <cost name="energy"> 0.0 </cost>
    <cost name="variance"> 1.0 </cost>
    <cost name="difference"> 1.0 </cost>
    <parameter name="minWalkers"> 0.4 </parameter>
    <parameter name="useWeight"> no </parameter>
    <optimizer method="cg">
      <parameter name="max_steps">20</parameter>
      <parameter name="tolerance"> 1e-6 </parameter>
      <parameter name="stepsize"> 0.1 </parameter>
      <parameter name="friction"> 5 </parameter>
      <parameter name="epsilon"> 1e-4 </parameter>
    </optimizer>

    <parameter name="power"> 2 </parameter>
    <parameter name="correlation"> 0.01 </parameter>
  </qmc> 

5. Experiments and Results

Change the parameters of VMC simulations and compare the results with dataspork.

move
timeStep
useDrift

6. Advanced topics

6.1. Using a Two-Body correlation function of Wagner-Mitas functor
6.2. Adding Three-Body correlation function

6.1. Using a Two-Body correlation function of Wagner-Mitas functor

This example shows an alternative correlation function to the previous section using the
functors introduced by Wagner-Mitas (J. Chem. Phys. 126,034105 (2007)). The difference
lies in the functional form of f(r) radial function for the Two-Body Jastrow. The Wagner-Mitas

radial function is a linear combination of "Wagner-Mitas" functors gWM as  where each WM

functor is given as  The scaling function is z(x) = x*x*(6-8*x+3*x*x) for a
given cutoff radius rc. Download the Li2.STO.3.xml and run it as

$QMCPATH/qmcapp Li2.STO.3.xml

Example 1.4. Two-Body Jastrow function with WM functors

  <wavefunction name="psi0" target="e">
    <jastrow name="J2" type="Two-Body" function="any" print="yes"> 
      <basisset>
        <atomicBasisSet type="WM" elementType="e" normalized="yes" expandYlm="no"> 
        <grid type="linear" ri="0" rf="10" npts="101"/> 
          <basisGroup rid="R0" n="1" l="0" m="0" type="WM"> 
            <radfunc id="ee0" exponent="1.55606692e+00" contraction="4.42863468e-01"/> 
            <radfunc id="ee1" exponent="2.92608972e+00" contraction="-1.19855434e+00"/>
            <radfunc id="ee2" exponent="5.16813113e+00" contraction="9.39917398e-01"/>
            <radfunc id="ee3" exponent="2.25725654e+00" contraction="-0.5" type="cusp"/> 
          </basisGroup>
        </atomicBasisSet>
      </basisset>
    <jastrow>
    <determinantset type="MO" key="STO" transform="no" source="i">
     ....
    </determinantset>
  </wavefunction> 

Define a Two-Body Jastow using generic radial functions as indicated by



jastrow/@function='any'. This node contains a basisset whose definition was discussed for
the molecular basis set.

The Two-Body Jatrow function for the electronic system as indicated by
wavefunction/@target='e' can have only one atomicBasisSet for the electrons
independently of the spin states.

Define a cutoff radius grid/@rf of the basisGroup/radfunc elements. Internally, the radial
part of each basisGroup is represented by a cubic spline function on a linear grid as
indicated by grid/@method='linear'. grid/@npts sets the number of grid points (knots) for
the spline functions. The first grid point grid/@ri is zero.

Start of a radial function f(r) whose components are given as the child radfunc elements.

Define the Ck (contracton) and Bk (exponent) for a WM functor. Each WM functor is

identified by unique names radfunc/@id which are again utilized by the optimization
procedure. The type of each radfunc is set by the parent node basisGroup/@type='WM'.

The WM function does not satisfy the cusp condition, although by using many WM
functions, one can mimic the cusp condition very closely. In order to amend this
problem, a radial functor which imposes the cusp condition can be added.
radfunc/@contraction='-0.5' is fixed by the e-e cusp condition.

The attribute names contraction and exponent are originated from the contracted Gaussian-
type or Slater-type bais set. contraction denotes the contraction factor of individual radial

functors and exponent is a scaling parameter of radial functors, e.g.,  of a Slater-type orbital.

In the same spirit, the parameter B of  is set by exponent.

Using a Two-Body Jastrow of WM functors introduces more variables that can be varied by
the optimization engines. Both contraction and exponent can be optimized as shown in
Example 1.5. contraction is named as 'radfunc/@id'_C, while exponent as 'radfunc/@id'_E.

The last radfunc/@id='ee3' corrects the cusp condition of the Two-Body Jastrow function which
cannot be enforced by the contraction of WM functors.

Example 1.5. Listing optimizable variables given by radfunc

  <qmc method="optimize" move="pbyp" completed="no">
    ....
    <optimize>ee0_C ee1_C ee2_C ee0_E ee1_E ee2_E ee3_E</optimize>
    ...
  </qmc>  

6.2. Adding Three-Body correlation function

This example introduces Three-Body Jastrow function. The most general Three-Body Jastrow
function implemented in QMCPACK is Geminal Three-Body function by Casula and Sorella (J.
Chem. Phys. 121, 7110 (2004)).

Here, i and j denote the electron indices, a and b the ionic indices. For this example, we will
use a special case of Geminal Three-Body function where the ionic indicies are identical, i.e.,

with l (l')=0 components.

Example 1.6. Three-Body Jastrow function for Li2

  <wavefunction name="psi0" target="e">
    <jastrow name="J3" type="Three-Body" function="any" transform="yes" print="yes" source="i"> 
      <basisset> 
        <atomicBasisSet type="WM" elementType="Li" normalized="yes" expandYlm="no">
          <grid type="linear" ri="0" rf="2" npts="101"/>
          <basisGroup rid="R0" n="1" l="0" m="0" type="WM">
            <radfunc id="j3Li0" exponent="4.55664" contraction="1.0"/>
          </basisGroup>
          <basisGroup rid="R1" n="1" l="0" m="0" type="WM">
            <radfunc id="j3Li1" exponent="1.51161" contraction="1.0"/>
          </basisGroup>
          <basisGroup rid="R2" n="1" l="0" m="0" type="WM">
            <radfunc id="j3Li2" exponent="0.5" contraction="1.0"/>
          </basisGroup>
        </atomicBasisSet>
      </basisset>
      <coefficient type="lambda" id="j3c" offset="0" diagonal="yes" sameBlocksForGroup="yes"> 
         <lambda i="0" j="0" c="-1.73649239e-01"/> 
         <lambda i="0" j="1" c="-2.49253960e+00"/>
         <lambda i="0" j="2" c="3.16682365e+00"/>
         <lambda i="1" j="1" c="3.67818042e-01"/>
         <lambda i="1" j="2" c="-1.09726145e+00"/>
         <lambda i="2" j="2" c="2.54268472e-01"/>
      </coefficient> 
    </jastrow>
     ....
  </wavefunction> 

Add a Three-Body Jastrow function. The attributes are

type

Type of Jastrow function, Three-Body

function

Type of radial functors. any indicates any pre-defined functors can be used.

transform

With yes, use a spline function. For function='any', transform is always yes.

source



The name or id of particleset which provide ionic centers.

print

With yes, the radial functors are printed out in a file. This is ignored for MPI jobs.

Define a "Molecular Basis Set" similarly to the single-particle orbitals in a Molecular
Basis Set.

Start of the %  coefficients.

type

Data type. type='lambda' lists the coefficient one by one.

id

ID of the coefficients. A set of names for the coefficients is generated for
optimization as 'coefficient/@id'_i_j where i=lambda/@i and j=lambda/@j.

offset

Offset for the indices lambda/@i and lambda/@j.

diagonal

With yes, an optimized version of Three-Body Jastrow using Diagonal Block Sparse
Matrix method is used. If diagonal='no', general Three-Body method is used. The
performance penalty of use of the general Three-Body method is insignificant for
Li2 but can be measurable for large-scale systems.

sameBlocksForGroup

With yes, the coefficient blocks for the particles are set to be identical if they
belong to the same species (group). If sameBlocksForGroup='no', all the coefficients
have to be provided explicitly. Otherwise, only the first block for the first Li atom
will be assign. The second block will be set to zero.

Define a coefficient  where i(j) are composite indices for the ionic index a(b) and

angular momenta l(l') and m(m').

Finally, optimize will have more variables to optimize:

 <optimize> j3c_0_0 j3c_1_1 j3c_2_2 j3c_0_1 j3c_0_2 j3c_1_2</optimize> 

Chapter 2. Applications to solids: Bulk Carbon
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On Tungsen cluster, BulkCarbon.tar can be found on your home directory. Follow these steps:

  cd scratch-global
  tar xf ~/BulkCarbon.tar
  cd BulkCarbon
  

The tar file can be downloaded with wget

  wget http://cms.mcc.uiuc.edu/qmcpack/qmcss07/input/BulkCarbon.tar
  

We will submit batch jobs for this exercise, since each run can take 15 minutes to hours. The
files ending with batch are batch scripts and should be used as

  bsub < batch-script

1. Introduction to bulk calculations

We will calculate the total energy of bulk carbon using Slater-Jastrow wavefunction whose
one-particle orbitals are the solution of DFT calculation in a plane-wave basis set. Being a
crystalline system, we need to specify a supercell for the electrons and ionic systems.
Although it is possible to create an input file from scratch, this is seldom necessary since we
use standard DFT or Quantum Chemistry packages to obtain one-particle orbitals and build a
trial wavefunction with it. Everything defined within qmcsystem is automatically generated by a
conversion tool pw2qmcpack.x a post-processing tool for Quantum Espresso
http://www.pwscf.org/.

Another important difference of this exercise from Li2 is that we use pseudopotentials for
Carbon atoms instead of a Coulomb potential.

Example 2.1. How to define a many-body Hamiltonian with pseudopotentials.

  <hamiltonian name="h0" type="generic" target="e">
    <pairpot name="ElecElec" type="coulomb" source="e" target="e"/>
    <pairpot name="IonIon" type="coulomb" source="ion0" target="ion0"/>
    <pairpot name="PseudoPot" type="pseudo" source="ion0" wavefunction="psi0" format="xml"> 
      <pseudo elementType="C" href="C.ldaopt.xml"/>
    </pairpot>
  </hamiltonian> 



Define a pairpot of pseudo (pseudopotentials). Since non-local pseduopotential
evaluations involve calculating ratio, it is important to tell which wavefunction is used.
Several formats are supported. Here, we will use C.ldaopt.xml.

For periodic systems, we have to treat long-range interactions and long-range correlation
with care. We will use Ewald breakup method by V. Natoli and D. M. Ceperley, J. Comput.
Phys. 117, 171-178 (1995) and K. P. Esler (note is available upon request).

2. Using DFT orbitals in a plane-wave basis set

The main input file is C.pw.xml. A single particle orbital of this example is expressed as a
linear combination of plane-wave basis functions:

Here, the coefficients

are obtained by solving a KS equation within the DFT. Below is the xml section to define a
Slater determinant wavefunction.

Example 2.2. How to use single-particle orbitals in a plane-wave basis set.

  <wavefunction name="psi0" target="e">
    <determinantset type="PW" href="c8.pwscf.h5" version="0.10">
      <basisset ecut="2.500000000000000E+001">
        <grid dir="0" npts="32" closed="no"/>
        <grid dir="1" npts="32" closed="no"/>
        <grid dir="2" npts="32" closed="no"/>
      </basisset>
      <h5tag name="twistIndex">
        0
      </h5tag>
      <h5tag name="twistAngle">
        0.000000000000000    0.000000000000000    0.000000000000000
      </h5tag>
      <slaterdeterminant>
        <determinant id="updet" size="16">    
        <occupation mode="ground" spindataset="0">
          </occupation>  
        </determinant>
        <determinant id="downdet" size="16">
          <occupation mode="ground" spindataset="0">
          </occupation>
        </determinant>
      </slaterdeterminant>
    </determinantset>
    </wavefunction>

type

Tell QMCPACK that the single-particle orbitals are in a plane-wave basis set so that
a specialized class can be used for the calculations.

href

Name of hdf5 file which contains large binary data. This file contains all the
eignvectors at the k-points used by DFT calculations.

version

Version of the external hdf5 file so that we can handle future changes.

Define parameters which determine the plane-wave basis set. The conversion tool
writes the FFT grid for the given energy cutoff.

Select the index of the twist angle of this wavefunction.

The k-point value in a reduced unit. Here, using Gamma point (0,0,0).

Define a Determinant set which has two <determinant/> for up and down electrons.

Use only the 16 lowest eigenstates.

3. Using DFT orbitals on a grid

A single particle orbital of this example is now tabulated on a regular grid. We use a spline
method to evaluate the orbitals and their graidents and laplacians. Friday lecture, Order(N)
methods in QMC, by Dario Alfe will discuss the details on the real-space wavefunctions. The
orbitals in this example are identical to those in the previous section on the grid points and
we will interpolate the values between the grid points. The main input file is C.bs.xml.

Example 2.3. How to use single-particle orbitals on a regular grid.

  <wavefunction name="psi0" target="e">
    <determinantset type="bspline" href="c8.pwscf.h5" version="0.10">
      <basisset ecut="2.500000000000000E+001">
        <grid dir="0" npts="32" closed="no"/>
        <grid dir="1" npts="32" closed="no"/>
        <grid dir="2" npts="32" closed="no"/>
      </basisset>
      <h5tag name="twistIndex">
        0
      </h5tag>
      <h5tag name="twistAngle">
        0.000000000000000    0.000000000000000    0.000000000000000
      </h5tag>
      <h5tag name="eigenstates">
        eigenstates_32_32_32
      </h5tag>
      <slaterdeterminant>
        <determinant id="updet" size="16">    
        <occupation mode="ground" spindataset="0">
          </occupation>  



        </determinant>
        <determinant id="downdet" size="16">
          <occupation mode="ground" spindataset="0">
          </occupation>
        </determinant>
      </slaterdeterminant>
    </determinantset>
    </wavefunction>

type

Tell QMCPACK that the single-particle orbitals are on a regular grid so that a
specialized class can be used for the calculations.

href

Name of hdf5 file which contains large binary data. The same file is used to store
both the plane-wave and real-space wavefunctions.

version

Version of the external hdf5 file so that we can handle future changes.

Define the real-space grid.

Select the index of the twist angle of this wavefunction. Identical to the plane-wave
basis set.

The k-point value in a reduced unit. Here, using Gamma point (0,0,0). Identical to the
plane-wave basis set.

The name of hdf5 group name which has the real-space wavefunctions. The conversion
tool uses the grid information and create a group.

Define a Determinant set which has two <determinant/> for up and down electrons.
Identical to the plane-wave basis set.

Use only the 16 lowest eigenstates.

4. Adding RPA Jastrow Function

The main input file is C.xml which has jastrow/@function='rpa'. Note that nothing else, e.g.,
parameters, is specified.

 <include href="c8.pwscf.xml"/>
  <wavefunction name="psi0" target="e">

    <jastrow name="Jee" type="Two-Body" function="rpa"/>
  </wavefunction>
  

For RPA Jastrow, all the parameters will be determined internally: Rs (density) and the radial

function of the short-range part and the k-dependent long-range part.

5. Optimizing One- and Three-Body Jastrow parameters

We will further improve the variational trial wavefunction by adding One- and Three-Body
Jastrow functions. The main input file is C.123.xml. The key section is

  <qmc method="optimize">
    <optimize> c0_C c1_C c2_C j3c_0_0 j3c_0_1 j3c_0_2 j3c_1_1 j3c_1_2 j3c_2_2</optimize>
  </qmc>
  

which lists the names of variational paremeters to be varied to optimize a combination of
energy and variance.


