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Outline

*  Why auxiliary-field QMC?
> A new approach: stochastic mean-field theory
>  Motivation: reduce QMC error & increase predictive power;
more “black-box” like LDA or HF?

e Random walks in Slater determinant space
» Understanding the sign (phase!) problem in this framework
> How to control it? (approximate)

e What applications are possible?
»  Molecules and solids: T=0K

plane-wave+Psps or Gaussians
>  Models for strongly correlated systems: T =0 and T>0K



Introduction: why auxiliary-field methods?

Recall sign problem:

1 particle, first excited state:

In real-space QMC, we need + and — walkers to cancel

N




Why auxiliary-field methods?

Recall sign problem:

1 particle, first excited state: S/

Solid state or quantum chemistry?

[y,
W,

—T7H

. 4
VAV
[ 777777

= basis

| Wy

Explicit --- matrix x vec

No sign problem



Why auxiliary-field methods?

Many particles?
A toy problem — trapped fermion atoms:

e 3 fermions in a box, two with | spin and one with | spin;

contact interaction V(R) = a 0(r, —r.) +ad(r, —r.) (no s-wave bt. a & b)
a b == particle label

- |

¢ introduce lattice

r L L 1
1 3 4

2

~=— site label

e Use a crude lattice basis with ¢« = 1,2, 3, 4 sites (circles). In second quantized form:

H=K + V = —t¢ Z (CIJC?—J -+ (’}Uc.@-ﬂ ) + U Z M1 70|
(ij)o i
“\_ near-neighbor

e Parameters: t; U o ag



Toy problem — trapped fermions

What is the ground state when U=0 >

- Diagonalize H directly:

Single-particle Hamiltonian

[0 -1 0 0] a b ~=—particle label
. 0 -1 0 I Q N Q —~ |
= I ; {
0 -1 0 -1 b ~—
L 0 0 -1 0 1 2 3 4 -=— sife label

Diagonalize H to find single-particle energies and w.f"s
Plot wfinorderof 1, 2, 3, 4

L6007 LG0T

| A0 . .
o 2 Put fermions in lowest levels:
L5001

01,80 2.00 240 3.00 3.50 4.00

450 201 = many-body wf:

407 ~40]

1+ 160 2.00 2:50 3.00 5.50 4.00 e [.3717480339  -.6015009557] [.3717480339 |
6071 607 6015009541 -3717480349 | |.6015009541
40 40 6015009553 3717480339 | |.6015009553
201 “ 3717480350 6015009543 | 3717480350,

05| 7%0 2.00 2.£0 3.00 35024.00
Oi] 1,50, 2.00 2.50 3.00 3.50 4.00 201
-.207 -.407

-.60"



Toy problem — trapped fermions

What is the ground state when U=0 >

- Diagonalize H directly

= AlternatIVE|y, pOWEF methOd: a b ~<—particle label
| Q a0 Q N |
T pS N v
1 2 3 4 == site label
e~ TH . ( A% A ) @ ( 4 x 4 ) = Bg operate on any \\I!(['J} repeatedly = [¥g)

_i.

Theorem: For any v = Z_E;_j Vi;C; Cy,

e’|o) = @) where &' = e® in matrix form
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1 1 1T

Toy problem — trapped fermions

[ >

> (vO, vi)=Multiply(P(10.), PsiT)

[.866609121199999999
1.40220
1.40220

301359999988

L.86660912109999999]
> GramSchmidt ({v0,v1l},normalized);
{[-.6015041283, -.3717422466, .3717450812, .601

[.37 17488488, .6015014581, .6015004522,

-.0000636598000000043740
301329999986 -,
.0000393434000000025819
000063659699999996100

efine projection Opelator exp(-tau™H):
P := tau —-> convert (evalf (exponential ((H+1.6),-tau))
For example exp(-0.1*H) looks like: (tau=0.1)
P(0.1);
8564116151 08549878210 004271380206 .0001422371517 |
08549878209 8606829955 08564101925 .00427 1380206
004271380206 08564101925 8606829955 08549878210
L.0001422371517  .004271380206 08549878210 8564116153
Pick an arbitrary initial wf to project from:
> ——— note we're n_, nl_,_ﬂ out The o component
L
1. -l
PsiT =
1. I
L 1. 1.
Project for a beta of 10, i.e. exp(-n*tau®H)IPsi_T>, with n*tau=10:

0000393430999999777598

5031834,

ST174722001)

yMatrix);

Same as from direct diag.:

ground-state wt:

3717480339 -.6015009557| [.3717480339 |
6015009541 -3717480349 | | 6015000541
6015009553 3717480339 | | 6015000553
3717480350 6015009543 | |.3717480350




Toy problem — trapped fermions

What is the ground state when U=0 >

- Diagonalize H directly ’ b = paticle label

|¢u$m|
I N - 1

1 2 3 4 == site label

- Alternatively, power method:

e”TH ( 4 x 4 ) 2 ( 4 x4 ) = By operate on any |W") repeatedly = |W)

* Applies to any non-interacting system

« Re-orthogonalizing the orbitals prevents fermions from
collapsing to the bosonic state

- Eliminates ‘sign problem’ in non-interacting systems



Toy problem — trapped fermions

¢ =— particle label

a ¢ b
| ¢ Q -~ |
. o1
(037 060\ (o037 2 3 4
0.60 —0.37 0.60

@) b= &) — matrix rep.

0.60  0.37 0.60

\ 037 060 /] \ 037 )

Properties of Slater determinants:

-=— sife label

e What is the probability to find the electron configuration shown in the picture?

That is, how to calculate (R /o) 7
e How to calculate Ey = (¢ H|¢) from the wave function?

e How to calculate the density matrix? The spin-spin correlation function?

A: Simple matrix manipulations (See Lab exercises)



Toy problem — trapped fermions

What is the ground state when U=0 >

a b ~<—particle label

- Diagonalize H directly
l ¢ a $ ) I
I W/ S
- Alternatively, power method: 1 , ; 4 = site label
e TH . ( 4 x 4 ) & ( 4 % 4 ) = Bx operate on any \'«If{m} repeatedly = |Wq)

What is the ground state, if we turnon U ?

- Lanczos (scaling !)

- Can we still write € T{jr[] one-body form?

Yes, with Hubbard-Stratonivich transformation



Introduction — why auxiliary-field methods?
Hubbard-stratonivich transformation
e Interacting two-body problem can be turned into a linear combination of

~2

non-interacting probems living in fluctuating external fields (‘completion of square’):
o7 Hubbard —Strotonivich transformation

, 245 = - .
[ em77/2 ¢ VT U do o auxiliary field
Y e

.-A!. JR— 1. . -__i- 5, _ I - r .
g + 0 =) w;;cic;: one-body operator

2

e [llustration of HS transformation — Hubbard-like interaction:

2 T h
e TU x(ngp—mnqy) dr

[ =]

r . T T (e —y 1 V2 ‘_
E_‘E’”iT”?L e U(ngp—mng)°/2 — factor x /E

-

. \2 '
il o UM mi1)"/2 _ factor x /e_

Or trick by Hirsch:

e T Unitn p2

A f

eV Uix(ng+ngg) dr

[ [

T T h 1 T fi
e—TE;ﬂ.iTniL _ E—TE;(ﬂ.fT—l—n;L)XQ . E ,_.::15 e (it —mnqy) (!Ob‘h"}' _ e’]"{;;ﬁ



Back to toy problem

What is the ground state, if we turnon U ?
1

e~ TUnmi N — factor x E ==13 ey i e T coshy = ™"/
eﬁf I 0 O O a b <—particle label
' 0 &0 0 —4——4——
€
—TH
[ = /d){ p()&) N Bﬁ] 1 2 3 4 = site label
0 el 0

e T 0 0 0
e’ 0 0
et . BK |
0 e 1" 0
0 0 0 e
B(x) l-particle propagator
e ™H = [ p(x)B(x)dx X = {1, 29, 23,74}

- With U, same as U=0, except for integral over x - Monte Carlo



Introduction to AF QMC

Standard ground-state AF QMC Sugiyama & Koonin ‘86

<g,() e—'rH . e—’?‘H O e—“]"H . 'E_TH 11;())

<O> = <II;() e—q-H L. e—“TH e—“]"H ... e—’TH 11;(:1>

I e ™H = [p(x)B(x)dx

[p(x") - p(x0) (WO B(x ) - B(x ) O B(x")) - B(x") Wy gx) ... gxH)
[ px) - p0) (B0 BOCD) -~ BT ) BeD) -~ B [0 ax a0

Choose |9} as a Slater determinant B(x)|¢) = ¢

S

Oce (XN )p(X)det| X |dX
Many-dim integral can be done by Monte Carlo: f Gr )p( )UJ [ ]
[ p(X)det[ X]dX

Applications mostly to “simple models™:
e Hubbard model, impurity models in condensed matter
e nuclear shell model

e lattice QCD



Introduction to AF QMC

Sign problem in standard AF QMC:
pdet[]

As system size grows, average sign of det| | — 0 exponentially.
= exponential scaling

e Sign problem is often most severe where the physics is most interesting, for example,
in 2-D Hubbard model when number of electrons ~ 85% number of lattice sites,

where it is thought to model the CuO planes of high-T,. cuprates

e [n fact, a phase (not just sign) problem appears for general 2-body interactions.



Some “lingo” from mean field

* Electronic Hamiltonian: (Born-Oppenheimer)

2
H = Hl—body + H2—body — h Zv2 + Z‘fext rz + Z Vlnt ’rl

1<J
can choose any single particle basis {Ixq) }
H = ZTZJCZCJ + Z lekc c CL.C] 1
ikl \/ Xi (r1)xj (r2) T r2|Xk(r2)Xl(1°1) drydry
* An orbital:
o) = Zﬁpz,m‘Xz
* A Slater determinant:
/ ¥1,2 o P1M \ — —
L2 Y2,M N -1 1 r o
2,2 2,0 N . basls 9
M : electrons L A
\ $N,Z PNM /




Summary: basic formalism of AF methods

To obtain ground state, use projection in imaginary-time:

p )>:e—TFI Yy T )

T: cnst, small [T (0): arbitrary initial state

Electronic Hamiltonian: (2™ quantization, given any 1-particle basis)

H = I:Il + H2 E:T,mclq7 + Z lekc c CLC] M : basis size
1,7,k,l

Hy — =% 9%  with o = 1-body

Hubbard-Strotonivich transf.

6—7’1{[ _ e—Tﬁlf 6—02/2 o0 T 0 do |0/\|
. g +

A

interacting system — ) (non-interacting system in auxiliary fields)

next >



AF methods: some background

* Applied in models in condensed matter, nuclear physics,
(lattice QCD), ....

Scalapino, Sugar, Hirsch, White et al.; Koonin; Sorella, ....
interacting — > (non-interacting in fields)

basic idea: Monte Carlo to do sum (path integral)
« However,

> sign problem for “simple” interactions (Hubbard)
> phase problem for realistic interaction
Fahy & Hamann; Baroni & Car; Wilson & Gyorffy; Baer et. al.; ....

 Reformulate ---



Slater determinant random walk (preliminary I)

e In general, we can choose any single-particle basis {|y;)}, withi=1,2,--- /N
1 1 1 1 - - i J.:'\‘r
e A single-particle orbital (labeled by 1) is given by ¢,,,110) =3 -7, @i X4)

-
|

e I[f we have N/ identical fermions () < N), a Slater determinant |¢) is given by:

¢) =¢1'p2' o '|0)
e () is represented by an N x )M matrix:
/ "]l:].-L :'J'::]--'H]I e :;f:".!-l-_'-1l'-'lr \
P21 P22 721
b =
\ PN, ¥YN32 " PNM /

dlel el
o Eg. (0/¢)) = det(dTd'); G, = La9) _1¢/(pT) LT, ;

(¢]e")

any 2-body correlation — {G; |



Slater determinant random walk (preliminary II)

HS transformation:

For example in electronic systems:

H=K+Vii+Vee+Vig

In plane-wave one-particle basis k) = %,_ﬁ(”f
Vit = > Vieeat(Gi — Gj)ele; +ZI )ele;
=
1-'_‘_ — E QQ CGt- Qfa QC(__,JC(__,
1,7, Q70
1 47 _
— e — ! ;
\ Z;;_'(::__, _._QCCT
4T

‘density’ decomposition Q#0 - A -



New AF QMC approach

Random walks in Slater determinant space:

Recall [W(" 1)) = =7H |g(0)y 1=, SZ, Carlson, Gubernatis

B H-S transformation SZ, Krakauer

fe—02/2 6\7((7) 7 — T

_ 1-body: }_,; ;vij(0)c;c;

Schematically:

e—TH
\\IJ( )> ]\I!( )> —
sample o from e_é;
apply 1-body propag.
0y 2T R POPRS , 16(0 (o)) — |¢)

b0y = 5, 16)

Exact so far next 5



Connection with DMC

Many-dim. electronic configuration space: R = {ry,ro,....,r1/ }

Mo A9

g=S"Li .y WO DY = e [y )
- 2m ,
e_Tf}ffzm — /E_szg 83[3:(’)‘ c.l') do' ’}’ = 4 / %

E_Tﬁ = /eﬂzﬂ ef‘ﬁ"ﬁ 7) d& e_ﬂ? d: 3M-dim vector

translation op.
Random walk realization of

basic idea (importance sampling can also be derived)

—TH

wO)

? |§[!(L)> sens — "II“;_.'
i ; —rV(R(")
IRO) multiply weight by e RO 7 diffusion - branchin
sample ¢ from Gaussian; | g
translate R(") by (=)




Random walks in Slater determinant space

Standard DMC Slater determinant RW
R) =|ri,ro.-- - rag) @) = |1, -+, Ynr)
> o ChilXk)  basis
Vo) =2 r Vo(R)R) Vo) =2 s Vold)
J [
o) =D e 1) o) =D nc @)
e The formalism is appealing — each random walker is a full Slater determinant

e Close formal relation to mean-field approaches. The QMC thus shares the same
machinery as DF'T or Hartree-Fock, using any one-particle basis
— Second-quantization, antisymmetry automatically imposed
— The single-particle problem ( H; ) is solved exactly, with no statistical error
— Correlation effects are obtained by building stochastic ensembles of

independent-particle solutions

e Core-electron problem: non-local pseudopotential can be implemented

straightforwardly — locality approrimation eliminated



But ... sign problem

E.g., in Hubbard:
Woléh ~

- > paths in Slater
determinant space

* Suppose Vo) is known; \_\/\ (Wolg) =0

consider “hyper-node” line

\ 4

- If path reaches hyper-node

then its descendent paths collectively contribute O

* MC signal is exponentially small compared to noise

In special cases (1/2 filling, or U<0), symmetry keeps paths to one side
—> Nno sign problem

next >



How to control the sign problem?

Constrained path appr.

keep only paths that never reach the node
require (Ur|p) >0
Trial wave function Zhang, Carlson, Gubernatis, ’97

Zhang, ‘00

next >



Recovery from wrong trial w.f.

More predictive QMC: requires
reducing reliance on trial wf

2-D Hubbard model: finite-T

« U>0; 12% doping, 4x4

* Sign problem severe <s>~10"5
Compare with:

* high T: exact calculation with sigr
problem

 T=0K: exact diag.

wrong trial

-0.76
=<s> in BSS
- -086 F 0.99
2 10 0.44
==
-0.96 -, BSS
7 e——o current
BSS w/ A1=0.1 exact
_106 i | | | | |
0.0 0.2 0.4 0.6 0.8
T
--------------------
024 b »>===xX BSS
e—o current
A BT 1
Po22 |+ CPMC T=0K
&L
[}
z"‘-\i
v 020 |
P
DIB ||||||||||||||||||||
0.0 0.2 0.4 0.6 0.8 1.0



New AF QMC approach

Random walks in Slater determinant space:
Recall [W(" 1 D) = e=7H |g(0)) 120, )

B H-S transformation

fe—02/2 6\7(0) 7 ] T

_ 1-body: }_,; ;vij(0)c;c;

F(\V’ HQI‘\QV”\I in'l'gv'ﬁr"l'inn I‘\I‘\"\C‘Q I"\V'I\I‘\Igm'

Bulk Si, 2-atom fcc primitive cell

k10,000, +-0.05 Exponential noise

-14.4 T T T T T

¢ ®
00 Phase problem (free projection)

-14.6

E (Ry)-s problem!

ZMC ) — 0

-15

projection time, nt

next >



Controlling the phase problem

Sketch of approximate solution:

| /P
%_-72%&;\ N
Re

Before:

Bulk Si, 2-atom fcc primitive cell

nwlk=10,000, t=0.05
-14.4 T T T T T

- Modify propagator by “importance sampling”:
phase - degeneracy (use trial wf)

* Project to one overall phase: Z¢> \IJT|¢>
break symmetry (+/- = rotation)

After:

Bulk Si, 2-atom fcc primitive cell
nwik=10,000, =0.05

9
©0-© Phase problem (free projection)

-14.6

-14.4 ‘ ‘ | | |

o
new method
©0-© Phase problem (free projection)
-14.6

- E-148-

projection time, nt

projection time, nt



Controlling the phase problem
--- more details

(a) Phaseless formalism SZ & Krakauer

- T S - 3 . - |r:)>
o Seek MC representation of [Wg) in the form:  |[Wg) =3, T3
i.e., the contribution of each |¢) is independent of its phase (if ') is exact)

e This is accomplished by an “importance-sampling” transformation to modify the

propagator:

/ 1 8(0) e B(o) do e = T / =12 (=D VT g o~TREFL()]

(W)

N (Up | /T Do

* Force bias: 6 = — {'&:ﬁrﬁ}h}
. N\ — (Tr|H|¢)
* . (Q) — T {5 (@)

(b) Projection to break “rotational invariance”
e With (a), we can confine the RW to one overall phase (e.g., 0)

e T'his is accomplished by projecting the RW onto 1D: reducing the weight of a walker

according to its phase change, e.g., by cos(A#)



Controlling the phase problem: some comments

Subtleties: 1

. Constraint before importance sampling: os |
Re<LIJT|(p> > O)
then use Re(W,|@) as importance function

--- natural (!1?), but does not work well s
. Instead, project after “importance sampling”:

use complex importance function (¥.|@) 1 05 0 05 1
Re<¥ |p>

Im<¥,|p>
[—)

(=

It helps to subtract “mean-field background” in HS:
02 — (D — (D)2 4+ 20(0) — (0)?

If ¥ is real, method reduces to constrained path MC

Two-dimensionality unique -
connection and difference(!) with fixed-phase



Discussion — new AF QMC

" Pluses
* Sign problem is often found to be reduced
< more robust and predictive methods
* Can do down-folded Hamiltonians (realistic models)
* Uses a basis --- walkers are Slater determinants
formal connection to DFT --- k-pts, non-loc psp’s, PAW’s, ....

" Minuses
* Uses a basis --- finite basis-size error
* Mixed-estimator of total energy is not variational
* Not straightforward to include a Jastrow factor in trial w.f. (....)



Application: molecular binding energies

j | | | | ‘ | | | | ‘ | | | | | | | | | | | | | | | | ‘ :
12 .0, H,0,C,F,Be, ... B
of e s
| 29 29 2
S g ~TiO,MnO o, A E
= . . 13 f calc’s:
o 6f T 1 3 types of calc’s:
% : o g x 1 - PW +psp: N
41~ 0 -1 - Gaussian/AE: ®
- B 1 - Gaussian/sc-ECP: O
2 _
- e % ]
0% < ‘ | | | Nval up to ~ 60
0 2 4 6 8 10 12

expt / exact (eV)

* All with single mean-field determinant as trial w.f.
 “automated” post-HF or post-DFT



Molecular binding energies

j L L L L B T T ]
10 ~ Si,, Py, S,, Cl, o ]
S g As,, Br,, Sb, > .
© | -TiO, MnO
CS) 6} np ]
o s
i presy
O 4 = ]
- ,r-.-“;
- oo
21 3
.
O j_r\ | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘i
0 2 4 6 8 10 12

expt / exact (eV)

3 types of calc’s:

- PW +psp: L
- Gaussian/AE: o
- Gaussian/sc-ECP: O

Nval up to ~ 60

- ~ 100 systems (also IP, EA, ag, W): eq. geom., moderate correlation
* Error < a few mHa (0.1 eV)

» Accuracy ~ CCSD(T)

* A QMC algorithm that complements DMC/GFMC
 reduced dependence on trial wf

* Larger systems? strong correlation?

(gold standard in chemistry, but N?)



Large extended systems

Cohesive energies: (eV/atom)

diamond Si  bcc Na

LDA 5.086 1.21

DMC  4.63(2) 0.991(1) w/o CPP
1.022(1) w/ CPP

present  4.59(3) 1.143(7)

expt. 4.62(8) 1.13

" Na (preliminary):
* metal
* new finite-size correction scheme
" plane-wave + pseudopotential calculations

" DMC -- Needs et al (Cambridge group)



Benchmark: H,O bond breaking

Mimics increasing correlation effects:
(Quantum-chemistry-like calculation with Gaussian basis)

F ‘ ‘ \\'/\ T T ‘ 1T T T ‘ T T T T T | I | 3

/ 75.92 —

E = exact/FCI .

-75.96 ®-® CCSD(T) E

R 760 UCCSD(T) E

. X—xX present ]

HZO ;}: -76.04 ; 7\ T T T T T T T ‘ T ‘ T T T T T T I \7 E

< -76.08 K 1

28 - ~ 10 -

fg -76.12 - [_Té C 17

= 7616 T oo o o

o = B ] E

* CCSD(T) methods 782 = g 13

(excellent at eq.) -76‘24 ; E\ L1 ‘ [ L1 L1 11 ‘ L1l ‘ (] ‘ ‘ (] ‘ 1 E

have prOblemS -76.28 ;7\ L1 | ‘ I N | ‘ I I | ‘ \1 L1 1 ‘ I I ‘4\ L1 5\ ‘ 1 6\ L1 "7 [ \8 1 ‘i

o 1 2 3 4 5 6 71 8

* The new method gives f R/R,

more uniform accuracy  gqyjilibrium Dissoc. limit

(error < 4 mHa) . . .
“bonding” “insulating”



F, bond breaking

Mimics increasing correlation effects:

* UHF unbound.
Nonetheless, large
dependence on trial wf??

* No. Spin-contamination: -~

&2
-’

- [Wyue): Not eigenstate of S 7

- low-lying triplet in F,

» Simple fix — spin-projection:

- Let |[WO)=|We,p)
- HS preserves spin symmetry
- each walker determinant:

-199.05 I H I
-199.06| e
/ — RCCSDTQ
-199.07} UCCSD(T)
®-® CCSD(T)
%X QMC/UHF
-199.08 - QMC/UHF-sp
-199.09|
, QMC/UHF:
-199.
20mH error!
] | ! | |
199.117 15 2 25
/‘ R/R

Equilibrium

free of contamination

“bonding”

Dissoc. limit

“insulating”




F, bond breaking --- larger basis

How well does DFT do?

* LDA and GGA/PBE | | | | |
well-depths too deep 199.26 |- ]

-199.28 —

* B3LYP well-depth excellent

-199.30 —

* “Shoulder” too steep in all 3 -9

-199.34 —

-199.36 —

-199.38 —

-199.40




C, potential energy curve

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 19 15 NOVEMBEE. 2004

ARTICLES

Full conflguratmn interaction potential energy curves for the X Z
B’ Ay, and B’ 12 states of C,: A challenge for approximate methods

Micah L. Abrams and C. David Sherrill® =
Center for Computational Molecular Science and Technology, School of Chemistiy and Biochemistry,
Georgia Institute of Technology, Atlanta, Georgia 30332-0400

(Received 7 July 2004 accepted 17 August 2004)

The C, molecule exhibits unusual bonding and several low-lying excited electronic states, making
the prediction of its potential energy curves a challenging test for quantum chemical methods. We

oo o0 -75.35
benchmark results. Unfortunately. even couple
. = P -75.40
unrestricted Hartree—Fock reference exhibits 1
ground state. The excited states are not accurat  7ss
/_N
7550
a
3 7555
2
w
-75.60
-75.65
75.70 |
x Tt &
-75.75 'zg L

038 10 12 14 16 18 2.0 22 24 28 28 3.0
Rgg / Angstrom



C, potential energy curve
" QMC with multi-determinant MCSCF trial wf (preliminary)

C2 total energy vs. bond length

-75.50 \ I T
B —— FCI + frozen core correction
7555 | —— QMC/CASSCF(8,8)
' —— QMC/2-UHF
-75.60 — ,
=
% - Absolute error
§ -75.65 exact ™[ T T
[} 0.012 —— FCI + frozen core correction
S N — QMC/CASSCF(8,8)
°© — QMC/2-UHF
= 0.010 |-
7370 - 0008~ _
i L
B B 0.006 — _
75775 — 5 0.004 |
E 0.2 ]
B 0.002 |- HII ~ i
| | | | 0.000 B l/ z 1kcal/mol
-75.80 L i
0.8 1 1.2 1.4 1.6 0.002 — |
C-C bond length (Angstrom) - | | | | | 1
0004 e 1 ‘ 12 4 16 18 2

C-C bond length (Angstrom)



Metal-insulator transition in H-chain

Stretching bonds in H,:

*—o—0—0— 00—

0.006 —

. 20.003 ,@%ﬁ
Symmetric: stretch each k Pl g Hié : 5
Asymmetric: stretch red —5 I " ]

bonds only ﬁ o 2

* Near-exact DMRG 201
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Lecture Notes: (missing recent developments — see
papers below)

« Shiwei Zhang, Constrained Path Monte Carlo For Fermions," in
“Quantum Monte Carlo Methods in Physics and Chemistry," Ed.M.
P. Nightingale and C. J. Umrigar, NATO ASI Series (Kluwer
Academic Publishers, 1998).
(cond-mat/9909090: http://xxx.lanl.gov/abs/cond-mat/9909090v1 )

* Shiwei Zhang, ~"Quantum Monte Carlo Methods for Strongly
Correlated Electron Systems," in " Theoretical Methods for Strongly
Correlated Electrons," Ed. by D. Senechal, A.-M. Tremblay, and C.
Bourbonnais, Springer-Verlag (2003).

(available at my website:

http://www.physics.wm.edu/~shiwei/Preprint/Springer03.pdf )


http://www.physics.wm.edu/%7Eshiwei/Preprint/Springer03.pdf

Some references: (incompletel)
In addition to the general QMC references from previous lectures:

5. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278
(1981)

6. G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 (1986)

7. S.R.White et. al., Phys. Rev. B 40, 506 (1989)

8. D. R.Hamann and S. B. Fahy, Phys. Rev. B 41, 11352 (1990)

9. P. L. Silvestrelliand S. Baroni and R. Car, Phys. Rev. Lett. 71, 1148 (1993)
1

0. N. Rom, D.M. Charutz, and D. Neuhauser, Chem. Phys. Lett. 270, 382
(1997).

11. S. Zh?ng and J. Carlson and J. E. Gubernatis, Phys. Rev. B 55, 7464
(1997

12. S. Zhang, Phys. Rev. Lett. 83, 2777 (1999)
13. S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003)
14. W. Purwanto and S. Zhang, Phys. Rev. E 70, 056702 (2004)

15. W. A. Al-Saidi, S. Zhang, and H. Krakauer, J. Chem. Phys. 124, 224101
(2006)



What we have not covered (see references)

Finite-T method (ref 8)
* Model systems
 Connection with PIMC

Ground state method for boson systems (Ref 10))

Back-propagation to calculate observables other than the
energy (refs 7, 10)

Finite-size correction for solids
* Twist-averaging (k-point sampling) (Ceperley) easy to do
« Two-body finite-size correction scheme (Kwee et al )

Applications (Al-Saidi, Chang, Kwee, Purwanto, ...)

* Van der waals, post-d atoms & molecules, TM molecules, electron affinities,
more bond-breaking, trapped atoms, ....

(my website)



Summary

New AF QMC approach: random walks in Slater det. space

* Potentially a method to systematically go beyond independent-particle methods
while using much of its machinery

--- superposition of independent-particle calculations
* Phaseless approximation (= constrained path if sign problem)
* Hybrid of real-space QMC and ‘mean-field’ methods

Towards making QMC more robust, capable, black-box:
 Benchmarks in ~ 100 systems (w/ increased correlation effects)
« Simple trial wfs
QMC ‘recovery’ ability important for strong correlation
« accuracy seems systematic

Many opportunities for further development
and applications!





