2007 Summer School on Computational Materials Science

Quantum Monte Carlo: From Minerals and Materials to Molecules
July 9 -19, 2007 « University of Illinois at Urbana—Champaign
http://www.mcc.uiuc.edu/summerschool/2007/gmc/

Simulations, random walks

and error analysis
David Ceperley

University of Illinois

7/3/2007 Simulations and Errors (Ceperley) 1



Simulations

« What is a simulation?

— It has an internal state  “S”
 In classical mechanics, the state = positions {q;} and velocities {p,} of the particles.
 In Ising model, they are the spins (up or down {c.}) of the particles.

— A rule for changing the state S_,, = T (S,)
* Inarandom case, the new state i1s sampled from a distribution T(S_,[S,).
— From initial state S,, we repeat the iteration many times: n=c0
S=>S=S=>85=5=8=>....5=S ., =
— The iteration index “n” is called “time.” It could be either “real time” or an
iteration count, a pseudo-time, sometimes called Monte Carlo time.

e Simulations can be:
— Deterministic (e.g. Newton’s equations via Molecular Dynamics)
— Stochastic (Monte Carlo, Brownian motion,...)
Nonetheless, you analyze in a similar way.

 Why do a simulation? It is the only exact method for general

many-body problems! As with experiment: the rules of the
simulation can be simple but output can be unpredictable.
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Ergodicity

* Typically simulations are assumed to be ergodic:

— after a certain time the system loses memory of its initial state, S,
except possibly for certain conserved quantities such as the energy,
momentum.

— The correlation time k (which we will define soon) is the number of
iterations it takes to forget.

— If you look at (non-conserved) properties for times much longer «,
they are unpredictable as if randomly sampled from some
distribution.

—Ergodicity is often easy to prove for the random transition but usually
difficult for the deterministic simulation.

The assumption of egodicity 1s used for:
 Warm up period at the beginning (or equilibration)

* To get independent samples for computing errors.
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Equilibrium distribution

» Let F(S|S,) be the distribution of state after time t.

 [f the system is ergodic, no matter what the initial state, one
can characterize the state of the system for t >> « by a unique
probability distribution: the equilibrium state F*(S).

lim,  F(S|S,)=F(S)

[

— In classical statistical systems, this 1s the canonical Boltzmann
distribution: F*(S)=exp(-V(S)/kT)/Z

— In VMC it 1s the square of the wavefunction

— In PIMC, it 1s the path distribution.

* One goal 1s to compute averages to get static properties in
equilibrium. e.g., the energy:

U =[dSF (SN (S)=(V (S)),.

* Another 1s to compute dynamics: for example the diffusion
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for suhstances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and o a four-term virial coefficient expansion.

L. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being inmtignted.
. Now at the Radistion Laboratory of the University of Cali-
fornia, Livermore, California.

IL THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define d 45, the minimum distance between particles 4
and B, as the shortest distance between 4 and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance d 5.

fWe will use the two-dimensional nomenclature here since it
is easier to visualize. The extension to three dimensions is obvious.
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Markov chain MC or Random Walk

« Markov chain is a random walk through phase space:
S; S, 253 25, 2...
Here “s” 1s the state of the system.
« ALL QMC is some type of Markov process. VMC i1s the simplest.
 The transition probability is P(S,—S,,,) a stochastic matrix

Ps—>s)>0 ) P(s—>s")=1

* In a Markov chain, the distribution of s_,, depends only on S, (by
definition). A drunkard has no memory!

« Let f (s) be the probability after “n” steps. It evolves according to a
“master equation.”

f (") =2 f(s)P(s—5)
fn+1 =P fn

The stationary states are eigenfunctions of P: P (I)ZS(I)
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Because P 1s positive, the eigenvalues have € < 1.

An equilibrium state must have € =1.

How many equilibrium states are there?

— If it is ergodic, then it will converge to a unique stationary distribution
(only one eigenfunction=1)

(In contrast to MD) ergodicity can be proven if;

— One can move everywhere in a finite number of steps with non-zero
probability. No barriers!

— Non-periodic transition rules. (e.g. hopping on a bi-partite lattice)

— Average return time 1s finite. (No expanding universe.) Not a problem
in a finite system.

If ergodic, convergence is geometrical and monotonic.
f.(5) = m(s) + 2, €7,6,0,(5)
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Metropolis algorithm

Three key concepts:

1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance.
3. Achieve detailed balance by using rejections.

Detailed balance: 7 (s) P(s -»s’) =z (S’)P (s’ —=5).

Put 7 (S) into the master equation. (Or sum above Eg. on s.)
2, 7(S)P(s »8’) =7 () 2, P (S =s)=7(s")
* Hence, 7(S) is an eigenfunction.
« IfP(s =25’)is ergodic, 7 (S) is unique steady state solution.
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Rejection Method

Metropolis achieves detailed balance by rejecting moves.
General Approach:
1. Choose distribution to sample, e.qg., n(s) = exp[-BH(s)]/Z
2. Impose detailed balance on transition: K(s—s’) = K(s’—s)
where K(s—s’) = n(s) P(s—s’)
(probability of being at s) * (probability of going to s’).
3. Break up transition probability into sampling and acceptance:
P(s—s’) = T(s—>s’) A(s—sS’)
(probability of generating s’ from s) * (probability of accepting move)

The optimal acceptance probability that gives detailed balance is:

T (s'—>s)7z(s')] — min(l, (s )]
T (s—8") 7 () (s)

Normalization of 7t(s) is not needed or used! IfT is constant!

A(S— s')=min|[l
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The “Classic” Metropolis method

Metropolis-Rosenbluth? -Teller? (1953) method is:

 Move from s to s’ with probability T(s—s’)= constant
« Accept with move with probability:

A(s2s’)=min[1,exp (- (E(S’)-E(s))/kgT )]

« Repeat many times
e Given ergodicity, the distribution of s will be the canonical
distribution: nt(s) = exp(-E(s)/kgT)/Z

« Convergence Is guaranteed but the rate is not!
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Picture of Metropolis Rejection

e BAE

.................... N

Always
Accept

Accept

AE

 If AE <0, it lowers the system energy —> accept.

Otherwise

* Generate UDRN u_ on (0,1)

« Compare u, to e PAE: If u, <eBAE accept.
If u, > eBAE reject.
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How to sample

S new =S old + A-(sprng - 0.5)

Uniform distribution in a cube of side “A”.

Note: It is more efficient to move one particle at a time because only the energy
of that particle comes in and the acceptance ratio will be larger.

A(s > s') =exp[-A(V (s) -V (9))]
=exp[-f 2 (v(i'=rj) - V(i —rj))]

Zl
J For V with cut-off range, difference is local.
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MONTE CARLO CODE

call initstate(s old)
E old = action(s old)

LOOP{ —
call sample(s_old,s new, T new,1)
E new = action(s new) -

call Sample(s_new,s_old,T_oldi)) “
A=exp(-E new+E old) T old/T [new
1f(A.gt.sprng()) { > —
s old=s new
— — —
E old=E new /
naccept=naccept+1}
call averages(s old) }
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Overview of MCMC

 Decide how to move from state to state.
* Initialize the state
« Throw away first K states as being out of equilibrium.

 Then collect statistics but be careful about correlations.

Common errors:

1. If you can move from s to s’, the reverse move must also be
possible.

2. Accepted and rejected states count the same!
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e Always measure acceptance ratio. Adjust ratio to roughly
0.5 by varying the “step size”. RULE: 0.1<a.r.<0.9

e A 20% acceptance ratio actually achieves better diffusion
than a 50% acceptance ratio in this example.

100

l LJ T l 1 L} ] 1 T ] 1 | ] T T T I 1 T T
] sef -4\ -
\ © METROPOLIS MONTE CARLO N * .\ i
0.80 A SMART MONTE CARLO — .
.\ o rorerS T | ash .
p 060 1 540 \° .
Lo - - \ ________ S ]
= --°—°\
040} \:Xj\ 7832 .
- 4 = - A 0\ .
N& \o
020 = = = == =l == = = ———_32-4'_ N
0 T . A L =B ]
Y 0.2 0.24 048 i ® METROPOLIS MONTE CARLO
Ao o8+ Bl e 7
© FORCE BtAS( x = 1)
X6L 799 - 8% L
. . . 0 AR S T U G N T U N L
Fig. 1. Average acceptance probability. 0 0.2 024 0.36 048

Nyo

XBL 790 - 2837

Fig. 3. <(£(i) - ¥(i + 100))%>

T(i) = 3n vector of argon
positions at step i.

7/3/2007 Simulations and Errors (Ceperley) 15



Variance of energy (local quantity) 1s not as sensitive to step size.
MC is a robust method! You don’t need to fine tune things!
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Optimizing the moves

Any transition rule is allowed as long as you can go anywhere
In phase space with a finite number of steps. (Ergodicity)

Trytofinda T(s 2 s’)=m (s”)/C.

— If'you can, the acceptance ratio will be 1.

Can use the forces to push the walk in the right direction.
— Taylor expand about current point: V(r)=V(r,)-F(r)(r-r,)
— Thenset T(s =2 s”) = exp[ -B(V(ry)- F(ry)(r-r )]
— Leads to Force-Bias Monte Carlo.
— Related to Brownian motion (Smoluchowski Eq.) and to diffusion Monte Carlo
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Estimated Errors

* In what sense do we calculate exact properties? Answer: if we average long
enough the error goes to zero, the errors of the simulation are controlled.

« Next, how accurate is the estimate of the exact value?
— Simulation results without error bars are only suggestive.
« Without error bars one has no idea of its significance.

* You should understand formulas and be able to make an “eye-
ball” estimate.

« Error bar: the estimated error in the estimated mean.
— Error estimates based on Gauss’ Central Limit Theorem.
— Average of statistical processes has normal (Gaussian) distribution.

— Error bars: square root of the variance of the distribution divided by
the number of uncorrelated steps.

Trace of MD_PE

Histogram of E

/
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Central Limit Theorem (Gauss)

Sample N independent values from F(x)dx, i.e. (X, X,, X5 ... ,Xy).

Calculate mean as y = (I/N) x.
What is the pdf of mean? Solve by fourier transforms
c,(k)=<e®>=[" dxF (xe* ¢, (k)=c,(k/N)"

. ik —k% Ky /2N =ik as /6NZ ..
lim,_, c,(k)=e

Characteristic function:

Cumulants: Mean = x; Variance= k, Skewness = k; Kurtosis= k,
The n=1 moment remains invariant but the rest get reduced by higher powers of N.

Given enough averaging almost anything becomes a Gaussian
distribution.

} standard error(y)=o= %

N(y-x)°

2K,

P(y)=(N/27zx,)" exp{—
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Approach to normalitv

/‘\/R,

R,
Fll/llTl¥1lF—Illllfilil
-5 0 58 0 5
{a) (b)
R,
1 1 [ T i 1T 7T 1 I 1 i i
5 -5 5
(c) (d)

Figure 1. Distributions of sums of uniform random numbers, each compared with the
normal distribution. (a) R), the uniform distribution. (b) R3, the sum of twe
uniformly distributed numbers. (c) Rs, the sum of three uniformly distributed

numbers. (d) Ris, the sum of twelve uniformly distributed numbers. 20



Conditions on Central Limit Theorem
| =< X" >= f dx F"(x)x"

We need the first three moments to exist.
— If I, is not defined = not a pdf
— If'I, does not exist = not mathematically well-posed.

— If I, does not exist = infinite variance. Important to know if variance is
finite for simulations.

Divergence could happen because of tails of distribution

|, =<x* >= j T dx Fr ()X

We need:

lim_ .  XF (X)—>0

OR Divergence because of singular behavior of F* at finite x:

We need: lim,, XF (X)—0
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Estimating Errors

Uncorrelated data

Correlated data

{a} O0<t<N

B S1/2

~ KZ(@—E)Z

error (a) = <(a—<a>)2>1/2 "\ N(N-D)

= correlation time

1/2

Problem: how to cut off the summation for «.

Blocking method: average together data in blocks longer than the

correlation time until 1t 1s uncorrelated.

7/3/2007
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error (

a

Estimate of errors

1/2

S\ 1/2 KZ(aT_a)z = 1
)= <(§_<a>)> ) It\I(N—l) a_ﬁza[

K=1+ 2iC (t) = correlation time = 2J%C(t)
= 0

C(t,t") =

(-
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Interactive code to
perform statistical
analysis of data

Analyzer (971 4,/98)

File

all Datasets

DataSpork

—

MD_FE

File Trace autocorrelation

Blocking

Trace of MD_PE

1000

futocorrelation for MO_PE

The file md3.:2ca contains 4 datasets.

tirme

MD_EM
MD_PE

MCp A2

Ermail questions/bugs to shumway@uiucedu

'-.-'iewl

10 F

os |

0.0 ﬂL“‘j e
O 100 200 300

Blocking dnalysis of MD_PE

0.0030
0.0020
0.0010

0.0
- 01234567 85829
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2000

3000 4000 S000

Dataset Information

mean: —2.2545316
+ 00021934381
sigma; 00289611649

cotrelation time: 25812561

start cuttoff | 00

end cuttoff | SO0O0
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Correlated data

5 col 1 (data 2)

File

I = E3

Trace of col 1 {data.2)
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Statistical vs. Systematic Errors

What are statistical errors?

— Statistical error measures the distribution of the averages about their avg.
— Statistical error can be reduced by extending or repeating runs, increase N.

K
standard error(y)=oc= Wz
The efficiency is how we measure the rate of convergence of the

statistical errors. 1

§=—>
To

— It depends on the computer, the algorithm, the property etc. But not on the

length of the run.
What are systematic errors ?

— Systematic error measures the others errors. Even if you sample forever you
do not get rid of systematic errors.

— Systematic error is caused by round-off error, non-linearities, bugs, non-
equilibrium, etc.
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Statistical Vocabulary

Trace of A(t):

Equilibration time.

Histogram of values of A ( P(A)).
Mean of A (a).

Variance of A (v).

estimate of the mean:

estimate of the variance
Autocorrelation of A (C(t)).

Correlation time « .

The (estimated) error of the (estimated) mean (o ).

Efficiency [= 1/(CPU time * error ?)]

7/3/2007
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Statistical thinking 1s slippery: be careful

“Shouldn’t the energy settle down to a constant”

— NO. It fluctuates forever. It is the overall mean which converges.
Because data is correlated, the central limit theorem is invalid

“The cumulative energy has converged”.

— BEWARE. Even pathological cases have smooth cumulative energy
curves.
“Data set A differs from B by 2 error bars. Therefore it must be
different”.

— This is normal in 1 out of 10 cases. [f things agree too well, something 1s
wrong!

“My procedure 1s too complicated to compute errors”™

— NO! Run your whole code 10 times and compute the mean and variance
from the different runs. If a quantity is important, you MUST estimate its
erTors.
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Recap: problems with estimating errors

* Any good simulation quotes Systematic and statistical errors for
anything important.

« The error and mean are simultaneously determined from the same
data. HOW?

* Central limit theorem: the distribution of an average approaches a
normal distribution (if the variance is finite).

— One standard deviation means ~2/3 of the time the correct answer is
within ¢ of the sample average.

« Problem in simulations is that data is correlated in time.
— It takes a “correlation” time x to be “ergodic”
— Correction errors for autocorrelation.
— throw away the initial transient.

« We need about 25 independent data points to estimate errors. (so that
the error of the error is only 1/sqrt(N)=20%)
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