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Carnegie Institution of VWashington

Geophysical Laboratory

Study earth materials Diamond anvil cell exp.:

High pressure experiments Ho-kwang Mao,

Now also astrobiology Russell J. Hemley
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Original mission: Measure Earth’s magnetic field (Carnegie ship)

Today: astronomy (Vera Rubin, Paul Butler,...) and isotope geochemistry
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PIMC: Outline of presentations

1PIMCfordlstlngwshablepartlcles(BM)
 2: Lab on distinguishable particles (BM)

' 3: PIMC for bosons (BM)

4: Bosonic applications of PIMC (BM)

5: PIMC for fermions (David Ceperley)

6: Lab on bosonic application (Brian Clark,
Ken Esler)
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Molecular Dynamics (MD)

Simulate the motion of the atoms in real time

Pair potentials:

Forces on the atom,
Newton’s law:

Change in velocity:

Change in position:

V(R) = Y V(r.r,)
i>j

E = mial = _ﬂ
o,

o, I

o m,

o,

— =Vi

ot

Microcanonical ensemble: Total energy is constant: E=K+V but K and V fluctuate:

(K)=Y % m (V?)=3N k,T

(V)= <2V(r,.,rj)>

Real time dynamics: Can e.g. determine the diffusion constant or watch proteins fold.
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Monte Carlo (MC)

Generate states in the microcanonical ensemble

o © o © Pair potentials: [V(R) = EV(n,rj)
o ° i>j
° % .o Probability of 1 [ v
=0 configuration |7 =~ €xp|-
o © & Z k,T
o @ @ i = =
o o & | Metropolis algorithm (1953):
O 1. Start from configuration R,
2. Propose a random move R_,— R,
3. Compute energies E_ =V(R, ) and E  =V(R )
4. IfE,, <E,, (down-hill) = always accept.
5. IfE,, >E,, (up-hill) = accept with probability
VR, ) —-V(R (R
A(Rold eRnew)=exp _ ( new) ( old) — ( new)
k,T mT(R,,,)
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Monte Carlo (MC)

Generate states in the microcanonical ensemble

o o o Metropolis algorithm (1953):

° ° ° 1. Start from configuration R,

° P 2. Propose a random move R, ,— R,

e b o 3. Compute energies £, ~=V(R,,) and E.. =V(R._,)
° . 4. IfE, <E,, (down-hill) — always accept.
. o ; = ‘1 9 5. IfE ,>E,, (up-hill) = accept with probability

° iy A(Rold — Rnew) = eXp - ( neW) ( Old)
k,T

Generate a Markov chain of configurations: R,, R,, R;, ...

[dROR) ™™ X
<0> = de e_/jV(R) = %;O(Rl)

The Boltzmann factor is absorbed into the generated ensemble.
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Quantum systems at finite temperature:
Richard Feynman’s path integrals

Real time path integrals

(not practical for simulations because oscillating phase)

W(R,1) = de' G(R,R.,t—t) W(R.1)

WR,1) = [dR ¢ WR )

i Imaginary time path integrals t=it
° (used for many simulations at T=0 and T>0)
o fRD)=[dR " F(R,T)
P = (e )
o A
| | - H -E | kgT
3 0 £ 21T 37 4t 5t 6= e —_— e

Imaginary time



The principal object in PIMC:
Thermal density matrix o(R,R’;B)

Density matrix definition:

o(R.R"B) = (Rl "|R)
P(RR.B)=Ye "™ W(R) W (R)

Density matrix properties: Imaginary time path integrals t=it

(used for many simulations)

Tripl= [dR (Rle”"|R) FRT)=[dR ¢ " F(R T
(6) - THO p] P(R.RB) = (Rle™ "|R)
Tr(p] _B H _E | k;T
e = g




The principal object in PIMC:
Thermal density matrix o(R,R’;B)

Density matrix definition: Free particle density matrix:

p(R,R,a/B) = <R‘e_ﬁ I:I‘R'> p(r,r’,ﬁ) — %fd3k e—ﬁ}hkz e—ikre+ikr'
P(RR.B) =Y e "™ W(R) W (R)
S

o(r,r',B) = (4aAf) ™" exp[_
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Step 1 towards the path integral

Matrix squaring property of the density matrix

Matrix squaring in operator notation:

5P =(e‘(ﬁ/2)H)(e‘(/3/2)H), G
kgT

Matrix squaring in real-space notation:

(RIPIRY =[dR (R1e ¥ IR) (R 1" " IR)

Matrix squaring in matrix notation:
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Repeat the matrix squaring step

Matrix squaring in operator notation:

A A 4
_ _ 1
5o /3H=(e (/5/4)H) -
kT

Matrix squaring in real-space notation:

(RIPIRY = [dR, [dR, [ dR,(RIe ™M IRXR 1e® ™M IR,XR, 1e™#" V™" IR)R, 1”7 IR)
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Path Integrals in Imaginary Time
Simplest form for the paths’ action: primitive approx.

Density matrix: | p=e 1_

Trotter break-up:

RIPIRY=(RI(™ IRY = [dR....[dR,, (RIe™IRXR le™IR).{R, 1™ IR’
1 M -1 1 1 2 M -1

A ~ M
- _ A A . _ T _ V
Trotter formula: |,~@+) _{im [e of ]
M —x

Path integral and primitive action S :

ﬁ &8

(RIPIR'Y = gﬁthe'S[R’] :
M (R —R)’ )

SIR1= Y, S VR + VIR, )] Vit &, Vir) |




Path Integrals in Imaginary Time
Every particle is represented by a path, a ring polymer.

Density matrix: | p=e 1_

Trotter break-up:

(RIPIRY =(RI(e™" IRY = [dR,...[dR,_(R1e™IRXR le™ IR).{R,_ 1™ IR

Analogy to groundstate QMC:

W(R) = lim (™" 19,y = [dR...[dR,_(RIe™ IRXR le™ IR,)..{R,,_ le™ W)

M —o0

PIMC literature:

D. Ceperley, Rev. Mod. Phys. 67 (1995) 279.
R. Feynman, “Statistical Mechanics”, Addison-Wesley, 1972.
B. Militzer, PhD thesis, see http://militzer.gl.ciw.edu




Write your own PIMC code
What is needed to start?

1) Initialize the paths as

A classical particle on a lattice.

. 2) Pick one "bead” and sample

£ new position

> 3) Compute the difference in

g kinetic and potential action

g' 4) Accept or reject based on

AR, =R )= min{ L exp[—S(Rnew)]}
exp[-S(R,,,)]

5) Try a “classical” move - shift
a polymer as a whole.




Write your own PIMC code
What is needed to start?

1) Initialize the paths as

A } classical particle on a lattice.

2) Pick one "bead” and sample
new position

3) Compute the difference in
kinetic and potential action

4) Accept or reject based on

A(Rold — Rnew) = min{l? eXp [_S(RneW)]}
exp[-S(R ;)]

5) Try a “classical” move - shift
a polymer as a whole.

X 6) Compute potential action and
accept or reject.

7) Go back to step 2).

Imaginary time




Example: PIMC for the harmonic
oscillator

Classical simulation PIMC simulation for
for T—0 - %X 7 T—0 give the correct
Gives the classical <  © . 5 qm groundstate
ground state E =0 energy E,=1hw




Much better efficiency through direct
sampling of the free particle d.m.

/\ 3 ° [
A » Distribution of “beads” for
@ noninteracting particles
© B I
-.g i+l = p(rl _1; v) p(rl i1 v)
P(F) =

= , i z
= . i !
S . Normalization from density
£ & i-1

matrix squaring property

P(r,_ysT;,1,2T) = fd?l p(7_,1,T) P(F,T,,T)

The distribution P(r;) is Gaussian centered at the midpoint of r,, and r,,,
Use the Box-Mueller formula to generate points r, according to P(r)).
I(R,; > R,,) ”(Rold)} _ 1

'T(R,,, > R,) n(R,,)

new new

AR, —R_ ) = min{l



Building a Browning Bridge
Method 1: Levy Flights

Multi-slice moves are more efficient!

Step O: Pick an imaginary time window
Step 1: Sample the first point r, A
Step 2: Sample the second point r,: g
- - B 4 \
,O(r1 r2 T) p(r2,r8 67 ) qE,) 6 \\
Py = o(F 7. ,77) i I D\
r.,r._,
1”8 g X \ 7/
o >
S
— 1 o
X
>
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Building a Browning Bridge
Method 1: Levy Flights

Multi-slice moves are more efficient!

Step O: Pick an imaginary time window
Step 1: Sample the first point r, A
Step 2: Sample the second point r,
Step 3: Sample the third point r,
Step 4: Sample the forth point r,
Step 5: Sample the fifth point r
Step 6: Sample the sixth point r,
Step 7: Sample the seventh point r,

Imaginary time
O = N W H» O &6 N

Last step: Accept or reject based on
the potential action since it was not
considered in the Levy flight generation.
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Building a Browning Bridge
Method 2: Bisection

Multi-slice moves are more efficient!

Step O: Pick an imaginary time window

Step 1: Sample the first point r: A

8

7

GEJ 6
p(r 4 r.,47) p(ri ri+4 41) =1 5 \

. Pl B
P(Fl) B — 8 ) /

SRRLANILL =1 I O
®
E 1
— 1 o
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Building a Browning Bridge
Method 2: Bisection

Multi-slice moves are more efficient!

Step O: Pick an imaginary time window
Step 1: Sample the first point r, A

Step 2: Sample points r, and r: g
7
Ol »
p(F. F.21) p(F.F.2T) El s
- -2 1 I i+2 .
P(ri> ) r r 4 % 3 /
ARSI E =1 I NN
®
E 1
1o
X
>
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Building a Browning Bridge
Method 2: Bisection

Multi-slice moves are more efficient!

Step O: Pick an imaginary time window
Step 1: Sample the first point r, A
Step 2: Sample points r, and r, g
Step 3: Sample the points r, ryrs ry 7
Ol o
Huge efficiency gain by prerejection of E 5 AN
unlikely paths using the potential action >| +
already at steps 1 and 2. o L
o S
£l -
0
X
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Making a better action:
Pair action method

(RIPIRY = dRe™™! sy 3" ER Tl iy, )

e =l 4AT

Pair action method:

O(R,R',T) = exp{-S,(R,R',7)} ]_[ 0, (r, 7. T)

exp{-S,(R,R',7)} = exp{—z s,(r,j,r,.]'.,r)} - n P 15:T)

w7 0o (11 T)

i<j

The many-body action is approximated a sum over pair
interactions. The pair action s;(7;.7;,7) can be computed
exactly by solving the two-particle problem.



Three methods to derive the
pair action s,(7,.7;,7)

(1) From definition: Sum over eigenstates:
P(RR.B) =Y e "™ Wi(R) W(R)

One needs to know all eigenstates analytically (free and bound). They are not known in most
cases. Only derived for Coulomb problem [Pollock. Comm. Phys. Comm. 52 (1988) 49].

(2) Matrix squaring:
p,(r.rm) = [ dr’ p,(r,r",x12) p, ("7 T/2)

One starts with a high temperature approximation and applies the squaring formula successively
(10 times) to obtain the pair density matrix at temperature 1/t. Advantage: works for all
potentials, provides diagonal and all off-diagaonal elements at once. Disadvantage: Integration is
performed on a grid. Grid error must be carefully controlled.

(3) Feynman-Kac formula:

See next slide. Advantage: Very simple and robust. Numerical accuracy can be easily
controlled. Disadvantages: Does not work for potentials with negative singularities (e.g.
attractive Coulomb potential), off-diagonal elements require more work.



Use a browning bridge to derive the
exact 2-particle action: Feynman-Kac

The exact action can be derived by averaging the potential action of free
particle paths generated with a browning bridge. Feynman-Kac formula:

P, B) = expl=S(r,r”, )] = expl—(S, + 5,1 = py (1", {exp[ [ de VIr(n)1])

BB
B I ) 1 ]
6 [ \ :
5 [ ———= \/(r)=1/r 1
5F [ o—Cau(r, r; p=0.1)/p ]
[ O—=ou(r, r; p=1)/p ]
4 r 4 S u(r, 1; p=10)/p ]
— Q. [ :
= 3 = 37 )
> = [ ]
2 2 [ ]
( ]
1 “‘mg 1 _ -
A e A A g S W WY G S S
0 : [ ]
0 05 1 1.5 0 ' 4
r 0 05 1 15
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Temperature (K]

Example for PIMC with distinguishable
particles: Melting of Atomic Hydrogen

At extremely high pressure, Electron gas is highly degenerate.
atomic hydrogen is predicted Model calculation for a one-

] component plasma of protons.
to form a Wigner crystal of

protons (b.c.c. phase) Coulomb simulations have been

preformed by Jones and Ceperley,
Phys. Rev. Lett. (1996).

3000 : o~/
\ Here, we include electron screening
\, llquid H ' effects by including Thomas Fermi
?%;‘% screen_ing leading to a Yukawa pair
2000 o 2N% ' potential: 2
liquid H, \ Z S+ /D
X S
* - V(ir)=—=¢
5 | r
1000 + _,-—--..?,»'_?‘Ewaj solidH| |
7 coid H =3 (g, 1)  Distinguish between classical and quantum melting.
z - 2) Study anharmonic effects in the crystal.
(0 an Wigner ]
//4// crystal
0 : {~
0 200

Pressure (GPa)



