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A quick reminder: what is electronic structure theory?

A quantum mechanical and first-principle approach

−→ Collection of ions + electrons

↓
Only input: Zα, Nα

Work in the Born-Oppenheimer approximation

Solve the Schrödinger equation for the electrons in the ionic field

H = −1

2
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Solving the many-electron Schrödinger equation

H = −1

2

∑
i

∇2
i +

∑
i

vext(ri ) +
1

2

∑
i 6=j

1

|ri − rj |

What do we want to compute?

Fermionic ground state and low-lying excited states

Evaluate expectation values
〈Ψn|O|Ψn〉
〈Ψn|Ψn〉

Where is the difficulty?

Electron-electron interaction → non-separable



Is there an optimal theoretical approach?

• Density functional theory methods

Large systems but approximate exchange/correlation

• Quantum chemistry post-Hartree-Fock methods
← ← ←

CI MCSCF CC . . .

Very accurate on small systems

• Quantum Monte Carlo techniques

Fully-correlated calculations

Stochastic solution of Schrödinger equation

Most accurate benchmarks for medium-large systems



An analogy

Density functional theory

Quantum chemistry

Quantum Monte Carlo



If you can, use density functional theory!
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COMPUTATIONAL COST

Quantum chemistry Quantum Monte Carlo

N N6 4>

HUMAN TIME

Density functional theory

N3

Wave function methods



All is relative . . .

We think of density functional theory as cheap and painless!



. . . but density functional theory does not always work

A “classical” example: Adsorption/desorption of H2 on Si(001)

+
H

Si
Eads

Edes

For a small model cluster Eads
a Edes

a Erxn

DFT 0.69 2.86 2.17

QMC 1.01(6) 3.65(6) 2.64(6) eV

DFT error persists for larger models!



Favorable scaling of QMC with system size

QMC possible for realistic clusters with 2, 3, 4 . . . surface dimers

Accurate QMC calculations doable from small to large scales

Error of DFT is large → 0.8 eV on desorption barrier !

Healy, Filippi et al. PRL (2001); Filippi et al. PRL (2002)



What about DFT and excited states?

− Restricted open-shell Kohn-Sham method (DFT-ROKS)

− Time-dependent density functional theory (TDDFT)
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When DFT has problems → Wave function based methods

Wave function Ψ(x1, . . . , xN) where x = (r, σ) and σ = ±1

How do we compute expectation values?

Many-body wave functions in traditional quantum chemistry

Interacting Ψ(x1, . . . , xN) ↔ One-particle basis ψ(x)

Ψ expanded in determinants of single-particle orbitals ψ(x)

Single-particle orbitals expanded on Gaussian basis

⇒ All integrals can be computed analytically



Many-body wave functions in traditional quantum chemistry

A jungle of acronyms: CI, CASSCF, MRCI, CASPT2 . . .

Expansion in linear combination of determinants

Ψ(x1, . . . , xN) −→ DHF =

∣∣∣∣∣∣∣
ψ1(x1) . . . ψ1(xN)

..
.

..
.

ψN(x1) . . . ψN(xN)

∣∣∣∣∣∣∣
←
−

←
−

c0DHF + c1D1 + c2D2 + . . . millions of determinants

←− ∣∣∣∣∣∣∣
ψ1(x1) . . . ψ1(xN)

..
.

..
.

ψN+1(x1) . . . ψN+1(xN)

∣∣∣∣∣∣∣
Integrals computed analytically but slowly converging expansion



Can we use a more compact Ψ?

We want to construct an accurate and more compact Ψ

Explicit dependence on the inter-electronic distances rij

How do we compute expectation values if no single-electron basis?



A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on Ψ

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dRΨ∗(R)HΨ(R)∫
dRΨ∗(R)Ψ(R)

≥ E0

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

←
−
=

∫
dREL(R) ρ(R) = 〈EL(R)〉ρ

ρ is a distribution function and EL(R) =
HΨ(R)

Ψ(R)
the local energy



Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

. Sample R from ρ(R) using Metropolis algorithm

. Average local energy EL(R) =
HΨ(R)

Ψ(R)
to obtain EV as

EV = 〈EL(R)〉ρ ≈
1

M

M∑
i=1

EL(Ri )

R

Random walk in 3N dimensions, R = (r1, . . . , rN)

Just a trick to evaluate integrals in many dimensions



Is it really “just” a trick?

Si21H22

Number of electrons 4× 21 + 22 = 106

Number of dimensions 3× 106 = 318

Integral on a grid with 10 points/dimension → 10318 points!

MC is a powerful trick ⇒ Freedom in form of the wave function Ψ



Are there any conditions on many-body Ψ to be used in VMC?

Within VMC, we can use any “computable” wave function if

. Continuous, normalizable, proper symmetry

. Finite variance

σ2 =
〈Ψ|(H− EV )2|Ψ〉

〈Ψ|Ψ〉
= 〈(EL(R)− EV )2〉ρ

since the Monte Carlo error goes as err(EV ) ∼ σ√
M

Zero variance principle: if Ψ → Ψ0, EL(R) does not fluctuate



Variational Monte Carlo and the generalized Metropolis algorithm

How do we sample distribution function ρ(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

?

Aim → Obtain a set of {R1,R2, . . . ,RM} distributed as ρ(R)

Let us generate a Markov chain

. Start from arbitrary initial state Ri

. Use stochastic transition matrix M(Rf |Ri)

M(Rf |Ri) ≥ 0
∑
Rf

M(Rf |Ri) = 1.

as probability of making transition Ri → Rf

. Evolve the system by repeated application of M



Stationarity condition

To sample ρ, use M which satisfies stationarity condition :∑
i

M(Rf |Ri) ρ(Ri) = ρ(Rf) ∀ Rf

. Stationarity condition

⇒ If we start with ρ, we continue to sample ρ

. Stationarity condition + stochastic property of M + ergodicity

⇒ Any initial distribution will evolve to ρ



More stringent condition

In practice, we impose detailed balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf)

Stationarity condition can be obtained by summing over Ri∑
i

M(Rf |Ri) ρ(Ri) =
∑

i

M(Ri|Rf) ρ(Rf) = ρ(Rf)

Detailed balance is a sufficient but not necessary condition



How do we construct the transition matrix M in practice?

Write transition matrix M as proposal T × acceptance A

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri)

M and T are stochastic matrices but A is not

Rewriting detailed balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf)

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf)

or
A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)



Choice of acceptance matrix A (1)

Detailed balance condition is

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

For a given choice of T , infinite choices of A satisfy this equation

Any function A(Rf |Ri) = F

(
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

)
with

F (x)

F (1/x)
= x

will do the job!



Choice of acceptance matrix A (2)

Original choice by Metropolis et al. maximizes the acceptance

A(Rf |Ri) = min
{

1,
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}

Note: ρ(R) does not have to be normalized

Original Metropolis method

Symmetric T (Rf |Ri) = 1/∆3N ⇒ A(Rf |Ri) = min
{

1,
ρ(Rf)

ρ(Ri)

}



Original Metropolis method

Aim → Obtain a set of {R1,R2, . . . ,RM} distributed as ρ(R)

Operationally, simple algorithm:

1. Pick a starting R and evaluate ρ(R)

2. Choose R′ at random in a box centered at R

3. If ρ(R′) ≥ ρ(R), move accepted → put R′ in the set

4. If ρ(R′) < ρ(R), move accepted with p =
ρ(R′)

ρ(R)

To do this, pick a random number χ ∈ [0, 1]:

a) If χ < p, move accepted → put R′ in the set

b) If χ > p , move rejected → put another entry of R in the set



Choice of proposal matrix T (1)

Is the original choice of T by Metropolis the best possible choice ?

Walk sequentially correlated⇒ Meff < M independent observations

Meff =
M

Tcorr
with Tcorr autocorrelation time of desired observable

Aim is to achieve fast evolution of the system and reduce Tcorr

Use freedom in choice of T to have high acceptance

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
≈ 1 ⇒ A(Rf |Ri) ≈ 1

and small Tcorr of desired observable

Limitation: we need to be able to sample T directly!



Choice of proposal matrix T (2)

If ∆ is the linear dimension of domain around Ri

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ 1−O(∆m)

. T symmetric as in original Metropolis algorithm gives m = 1

. A choice motivated by diffusion Monte Carlo with m = 2 is

T (Rf |Ri) = N exp

[
−(Rf − Ri − V(Ri)τ)

2

2τ

]
with V(Ri) =

∇Ψ(Ri)

Ψ(Ri)

. Other (better) choices of T are possible



Acceptance and Tcorr for the total energy EV

Example: All-electron Be atom with simple wave function

Simple Metropolis

∆ Tcorr Ā

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
0.20 45 0.75

Drift-diffusion transition

τ Tcorr Ā

0.100 13 0.42
0.050 7 0.66
0.020 8 0.87
0.010 14 0.94



Generalized Metropolis algorithm

1. Choose distribution ρ(R) and transition probability T (Rf |Ri)

2. Initialize the configuration Ri

3. Advance the configuration from Ri to R′

a) Sample R′ from T (R′|Ri).

b) Calculate the ratio q =
T (Ri|R′)

T (R′|Ri)

ρ(R′)

ρ(Ri)

c) Accept or reject with probability q

Pick a uniformly distributed random number χ ∈ [0, 1]

if χ < p, move accepted → set Rf = R′

if χ > p, move rejected → set Rf = R

4. Throw away first κ configurations of equilibration time

5. Collect the averages and block them to obtain the error bars



Improvements on simple and drift-diffusion algorithms

. For all-electron and pseudopotential systems:

Move one electron at the time → Decorrelate faster

Does total matrix M =
∏N

i=1 Mi satisfy stationarity condition?

Yes if matrices M1,M2, . . . ,Mn satisfy stationarity condition

. For all-electron systems (Umrigar PRL 1993)

− Core electrons set the length scales

→ T must distinguish between core and valance electrons

− Do not use cartesian coordinates

→ Derivative discontinuity of Ψ at nuclei

Better algorithms can achieve Tcorr = 1− 2



Expectation values in variational Monte Carlo (1)

We compute the expectation value of the Hamiltonian H as

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

=

∫
dREL(R) ρ(R)

= 〈EL(R)〉ρ ≈
1

M

M∑
i=1

EL(Ri )

Note: a) Metropolis method: ρ does not have to be normalized

→ For complex Ψ we do not know the normalization!

b) If Ψ → eigenfunction, EL(R) does not fluctuate



Expectation values in variational Monte Carlo (2)

The energy is computed by averaging the local energy

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

= 〈EL(R)〉ρ

The variance of the local energy is given by

σ2 =
〈Ψ|(H− EV )2|Ψ〉

〈Ψ|Ψ〉
= 〈(EL(R)− EV )2〉ρ

The statistical Monte Carlo error goes as err(EV ) ∼ σ√
M

Note: For other operators, substitute H with X



Typical VMC run

Example: Local energy and average energy of acetone (C3H6O)

0 500 1000 1500 2000
MC step
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σ VMC

EVMC = 〈EL(R)〉ρ = −36.542± 0.001 Hartree (40×20000 steps)

σVMC = 〈(EL(R)− EVMC)2〉ρ = 0.90 Hartree



Variational Monte Carlo → Freedom in choice of Ψ

Monte Carlo integration allows the use of complex and accurate Ψ

⇒ More compact representation of Ψ than in quantum chemistry

⇒ Beyond c0DHF + c1D1 + c2D2 + . . . millions of determinants



Jastrow-Slater wave function (1)

Ψ(r1, . . . , rN) = J (r1, . . . , rN)
∑
k

dkD↑
k (r1, . . . , rN↑)D

↓
k (rN↑+1, . . . , rN)

J −→ Jastrow correlation factor

- Positive function of inter-particle distances

- Explicit dependence on electron-electron distances rij

- Takes care of divergences in potential



Jastrow-Slater wave function (2)

Ψ(r1, . . . , rN) = J (r1, . . . , rN)
∑
k

dkD↑
k (r1, . . . , rN↑)D

↓
k (rN↑+1, . . . , rN)

∑
dk D↑

kD↓
k −→ Determinants of single-particle orbitals

- Few and not millions of determinants as in quantum chemistry

- Slater basis to expand orbitals in all-electron calculations

φ(r) =
Nuclei∑

α

∑
kα

ckα r
nkα−1
α exp(−ζkαrα) Ylkαmkα

(̂rα)

Gaussian atomic basis used in pseudopotential calculations

- Slater component determines the nodal surface



What is strange with the Jastrow-Slater wave function?

Ψ(r1, . . . , rN) = J (r1, . . . , rN)
∑
k

dkD↑
k (r1, . . . , rN↑) D↓

k (rN↑+1, . . . , rN)

. Why is Ψ not depending on the spin variables σ?

Ψ(x1, . . . , xN) = Ψ(r1, σ1, . . . , rN , σN) with σi = ±1

. Why is Ψ not totally antisymmetric?



Why can we factorize D↑
kD↓

k?

Consider N electrons with N = N↑ + N↓ and Sz = (N↑ − N↓)/2

Ψ(x1, . . . , xN) = Ψ(r1, σ1, . . . , rN , σN) with σi = ±1

Define a spin function ζ1

ζ1(σ1, . . . , σN) = χ↑(σ1) . . . χ↑(σN↑)χ↓(σN↑+1) . . . χ↓(σN)

Generate K = N!/N↑!N↓! functions ζi by permuting indices in ζ1

The functions ζi form a complete, orthonormal set in spin space∑
σ1...σN

ζi (σ1, . . . , σN)ζj(σ1, . . . , σN) = δij



Wave function with space and spin variables

Expand the wave function Ψ in terms of its spin components

Ψ(x1, . . . , xN) =
K∑

i=1

Fi (r1, . . . , rN) ζi (σ1, . . . , σN)

Ψ is totally antisymmetric ⇒

. Fi = −Fi for interchange of like-spin

. Fi = ± permutation of F1

Ψ(x1, . . . , xN) = A{F1(r1, . . . , rN) ζ1(σ1, . . . , σN)}



Can we get rid of spin variables? Spin-assigned wave functions

Note that if O is a spin-independent operator

〈Ψ|O|Ψ〉 = 〈F1|O|F1〉

since the functions ζi form an orthonormal set

More convenient to use F1 instead of full wave function Ψ

To obtain F1, assign the spin-variables of particles:

Particle 1 2 . . . N↑ N↑+1 . . . N

σ 1 1 . . . 1 −1 . . . −1

F1(r1, . . . , rN) = Ψ(r1, 1, . . . , rN↑ , 1, rN↑+1,−1, . . . , rN ,−1)



Spin assignment: a simple wave function for the Be atom (1)

Be atom, 1s2 2s2 ⇒ N↑ = N↓ = 2, Sz = 0

Determinant of spin-orbitals φ1s χ↑, φ2s χ↑, φ1s χ↓, φ2s χ↓

D =
1√
4!

∣∣∣∣∣∣∣∣∣∣

φ1s(r1)χ↑(σ1) . . . φ1s(r4)χ↑(σ4)

φ2s(r1)χ↑(σ1) . . . φ2s(r4)χ↑(σ4)

φ1s(r1)χ↓(σ1) . . . φ1s(r4)χ↓(σ4)

φ2s(r1)χ↓(σ1) . . . φ2s(r4)χ↓(σ4)

∣∣∣∣∣∣∣∣∣∣
Spin-assigned F1(r1, r2, r3, r4) = D(r1,+1, r2,+1, r3,−1, r4,−1)

F1 =
1√
4!

∣∣∣∣∣∣∣∣∣∣

φ1s(r1) φ1s(r2) 0 0

φ2s(r1) φ2s(r2) 0 0

0 0 φ1s(r3) φ1s(r4)

0 0 φ2s(r3) φ2s(r4)

∣∣∣∣∣∣∣∣∣∣



Spin assignment: a simple wave function for the Be atom (2)

Be atom, 1s2 2s2 ⇒ N↑ = N↓ = 2, Sz = 0

F1 =
1√
4!

∣∣∣∣∣∣∣∣∣∣

φ1s(r1) φ1s(r2) 0 0

φ2s(r1) φ2s(r2) 0 0

0 0 φ1s(r3) φ1s(r4)

0 0 φ2s(r3) φ2s(r4)

∣∣∣∣∣∣∣∣∣∣
=

1√
4!

∣∣∣∣∣ φ1s(r1) φ1s(r2)

φ2s(r1) φ2s(r2)

∣∣∣∣∣×
∣∣∣∣∣ φ1s(r3) φ1s(r4)

φ2s(r3) φ2s(r4)

∣∣∣∣∣
D(x1, x2, x3, x4)→ D↑(r1, r2)× D↓(r3, r4)



Jastrow-Slater spin-assigned wave function

To obtain spin-assigned Jastrow-Slater wave functions, impose

Particle 1 2 . . . N↑ N↑+1 . . . N

σ 1 1 . . . 1 −1 . . . −1

Ψ(r1, . . . , rN) = F1(r1, . . . , rN)

= J (r1, . . . , rN)
∑
k

dkD↑
k (r1, . . . , rN↑) D↓

k (rN↑+1, . . . , rN)



How do we impose space and spin symmetry on Jastrow-Slater Ψ?

∑
k dk Dk is constructed to have the proper space/spin symmetry

. Spacial symmetry

Often, J = J ({rij}, {riα}) with i , j electrons and α nuclei

⇒ J invariant under rotations, no effect on spacial symmetry of Ψ

. Spin symmetry

If J is symmetric

→ for interchange of like-spin electrons ⇒ Ψ eigenstate of Sz

→ for interchange of spacial variables ⇒ Ψ eigenstate of S2



Jastrow factor and divergences in the potential

At interparticle coalescence points, the potential diverges as

− Z

riα
for the electron-nucleus potential

1

rij
for the electron-electron potential

Local energy
HΨ

Ψ
= −1

2

∑
i

∇2
i Ψ

Ψ
+ V must be finite

⇒ Kinetic energy must have opposite divergence to the potential V



Divergence in potential and behavior of the local energy

Consider two particles of masses mi , mj and charges qi , qj

Assume rij → 0 while all other particles are well separated

Keep only diverging terms in
HΨ

Ψ
and go to relative coordinates

close to r = rij = 0

− 1

2µij

∇2Ψ

Ψ
+ V(r) ∼ − 1

2µij

Ψ′′

Ψ
− 1

µij

1

r

Ψ′

Ψ
+ V(r)

∼ − 1

µij

1

r

Ψ′

Ψ
+ V(r)

where µij = mi mj/(mi + mj)



Divergence in potential and cusp conditions

Diverging terms in the local energy

− 1

µij

1

r

Ψ′

Ψ
+ V(r) = − 1

µij

1

r

Ψ′

Ψ
+

qiqj

r
= finite

⇒ Ψ must satisfy Kato’s cusp conditions:

∂Ψ̂

∂rij

∣∣∣∣∣
rij=0

= µijqi qjΨ(rij = 0)

where Ψ̂ is a spherical average

Note: We assumed Ψ(rij = 0) 6= 0



Cusp conditions: example

The condition for the local energy to be finite at r = 0 is

Ψ′

Ψ
= µijqi qj

• Electron-nucleus: µ = 1, qi = 1, qj = −Z ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= −Z

• Electron-electron: µ =
1

2
, qi = 1, qj = 1 ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= 1/2



Generalized cusp conditions

What about two electrons in a triplet state?

Or more generally two like-spin electrons (D↑ or D↓ → 0)?

Ψ(r = rij = 0) = 0 ?!?

Near r = rij = 0, Ψ =
∞∑

l=l0

l∑
m=−l

flm(r) r l Ylm(θ, φ)

Local energy is finite if

flm(r) = f
(0)
lm

[
1 +

γ

(l + 1)
r + O(r2)

]
where γ = qi qj µij

R. T. Pack and W. Byers Brown, JCP 45, 556 (1966)



Generalized cusp conditions: like-spin electrons

• Electron-electron singlet: l0 = 0 ⇒ Ψ ∼
(

1 +
1

2
r

)
⇒ Ψ′

Ψ
=

1

2

• Electron-electron triplet: l0 = 1 ⇒ Ψ ∼
(

1 +
1

4
r

)
r



Cusp conditions and QMC wave functions (1)

σ = +1 for first N↑ electrons, σ = −1 for the others

Ψ(r1, . . . , rN) = J (r1, . . . , rN↑)
∑
k

dk D↑
k (r1, . . . , rN↑)D

↓
k (rN↑+1, . . . , rN)

. Anti-parallel spins: rij → 0 for i ≤ N↑, j ≥ N↑ + 1

Usually, determinantal part 6= 0

⇒ J (rij) ∼
(

1 +
1

2
rij

)
⇔ J ′

J

∣∣∣∣
rij=0

=
1

2

. Parallel spins: rij → 0 for i , j ≤ N↑ or i , j ≥ N↑ + 1

Determinantal part → 0

⇒ J (rij) ∼
(

1 +
1

4
rij

)
⇔ J ′

J

∣∣∣∣
rij=0

=
1

4



Cusp conditions and QMC wave functions (2)

. Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor

J (rij) =
∏
i<j

exp

{
b0

rij
1 + b rij

}

with b↑↓0 =
1

2
or b↑↑0 = b↓↓0 =

1

4

Imposes cusp conditions
+

keeps electrons apart
00

rij



Cusp conditions and QMC wave functions (3)

. Electron-nucleus cusps imposed through the determinantal part

Assume that the nucleus is at the origin and Ψ(ri = 0) 6= 0

If each orbital satisfies the cusp conditions

∂φ̂j

∂r

∣∣∣∣∣
r=0

= −Z φ̂j(r = 0)

⇒
∂

∑
k dk D̂k

∂r

∣∣∣∣∣
r=0

= −Z
∑
k

dk D̂k(r = 0)

Note: Slater basis best suited for all-electron systems

No electron-nucleus cusp with pseudopotential



The effect of the Jastrow factor

Pair correlation function for ↑↓ electrons in the (110) plane of Si

g↑↓(r, r
′) with one electron is at the bond center

Hood et al. Phys. Rev. Lett. 78, 3350 (1997)



Simple wave function for the Be atom

Be atom, 1s2 2s2 ⇒ N↑ = N↓ = 2, Sz = 0

Spin-assigned Ψ(r1,+1, r2,+1, r3,−1, r4,−1) = J D

. Factorized determinant

D = D↑ × D↓ =

∣∣∣∣∣ φ1s(r1) φ1s(r2)

φ2s(r1) φ2s(r2)

∣∣∣∣∣×
∣∣∣∣∣ φ1s(r3) φ1s(r4)

φ2s(r3) φ2s(r4)

∣∣∣∣∣
. Simple Jastrow factor

J =
∏

ij=13,14,23,24

exp

{
1

2

rij
1 + b rij

}
×

∏
ij=12,34

exp

{
1

4

rij
1 + b rij

}



Jastrow factor for atoms and molecules: Beyond the simple form

Boys and Handy’s form

J (ri , rj , rij) =
∏

α,i<j

exp
{∑

cα
mnk

(
r̄ m
iα r̄ n

jα + r̄ n
iα r̄ m

jα

)
r̄ k
ij

}

with r̄iα =
a riα

1 + a riα
and r̄ij =

d rij
1 + d rij

Cusp conditions imposed by requiring:

For electron-electron cusps: m = n = 0 if k = 1

For electron-nucleus cusps: No n = 1 or m = 1, D satisfies cusps

More general form: Lift constraints and allow all values of n, m, k

Impose the cusp conditions via linear dependencies among cα
mnk

Other scaling functions are possible, e.g. (1− e−a r )/a



Some comments on Jastrow factor (1)

More general Jastrow form with e-n, e-e and e-e-n terms∏
α,i

exp {A(riα)}
∏
i<j

exp {B(rij)}
∏

α,i<j

exp {C (riα, rjα, rij)}

. Polynomials of scaled variables, e.g. r̄ = r/(1 + ar)

. J > 0 and becomes constant for large ri , rj and rij

. Electron-electron terms B

- Imposes the cusp conditions and keeps electrons apart

- More general than simple J (rij) gives small improvements

. Electron-nucleus terms A

Should be included if determinantal part (DFT or HF) is not

reoptimized: e-e terms alter the single-particle density



Role of the electron-nucleus terms

Example: Density of all-electron Carbon atom

DFT determinant + e-e J + e-n J

Foulkes et al. Rev. Mod. Phys. 73, 33 (2001)



Some comments on Jastrow factor (2)

. Electron-electron-nucleus terms C

If the order of the polynomial in the e-e-n terms is infinite, Ψ

can exactly describe a two-electron atom or ion in an S state

For these systems, a 5th-order polynomial recovers more than

99.99% of the correlation energy, Ecorr = Eexact − EHF

. Is this Jastrow factor adequate for multi-electron systems?

The e-e-n terms are the most important: due to the exclusion

principle, it is rare for 3 or more electrons to be close, since at

least 2 electrons must necessarily have the same spin



Jastrow factor with e-e, e-e-n and e-e-e-n terms

J EVMC E corr
VMC (%) σVMC

Li EHF -7.43273 0

e-e -7.47427(4) 91.6 0.240

+ e-e-n -7.47788(1) 99.6 0.037

+ e-e-e-n -7.47797(1) 99.8 0.028

Eexact -7.47806 100 0

Ne EHF -128.5471 0

e-e -128.713(2) 42.5 1.90

+ e-e-n -128.9008(1) 90.6 0.90

+ e-e-e-n -128.9029(3) 91.1 0.88

Eexact -128.9376 100 0

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)



Dynamic and static correlation

Ψ = Jastrow × Determinants → Two types of correlation

. Dynamic correlation

Described by Jastrow factor

Due to inter-electron repulsion

Always present

. Static correlation

Described by a linear combination of determinants

Due to near-degeneracy of occupied and unoccupied orbitals

Not always present



Static correlation (1)

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration 1s22s2

Additional important configuration 1s22p2

Ground state has 1S symmetry ⇒ 4 determinants

D = (1s↑, 2s↑, 1s↓, 2s↓) + c
[
(1s↑, 2p↑x , 1s↓, 2p↓x)

+ (1s↑, 2p↑y , 1s↓, 2p↓y )

+ (1s↑, 2p↑z , 1s↓, 2p↓z )
]

1s22s2 × J (rij) → E corr
VMC = 61%

1s22s2 ⊕ 1s22p2 × J (rij) → E corr
VMC = 93%



Static correlation (2)

Example: E corr
VMC and E corr

DMC for 1st-row dimers

MO orbitals with atomic s-p Slater basis (all-electron)

Active MO orbitals are 2σg , 2σu, 3σg , 3σu, 1πu, 1πg

5th-order polynomial J (e-n, e-e, e-e-n)

Li Be B C N O F

70
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%
 c
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n 
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VMC
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multi-determinant

1 determinant

multi-determinant

1 determinant

2 2 2 2 2 2 2

Filippi and Umrigar, J. Chem. Phys. 105, 213 (1996)



Determinant versus Jastrow factor

Determinantal part yields the nodes (zeros) of wave function

⇒ Quality of the fixed-node DMC solution

Why bother with the Jastrow factor?

Implications of using a good Jastrow factor for DMC:

. Efficiency: Smaller σ and time-step error ⇒ Gain in CPU time

. Expectation values other than energy ⇒ Mixed estimator

. Non-local pseudopotentials and localization error

⇒ Jastrow factor does affect fixed-node energy



Why should ΨQMC = JD work?

Full wave-function
Ψ

−→ Factorized wave-function
JΦ→ →

Full Hamiltonian
H

−→ Effective Hamiltonian
Heff

HΨ = EΨ −→ HJΦ= EJΦ → HJ
J

Φ= EΦ

HeffΦ = EΦ

Heff weaker Hamiltonian than H

⇒ Φ ≈ non-interacting wave function D

⇒ Quantum Monte Carlo wave function Ψ = JD



Why going beyond VMC?

Dependence of VMC from wave function Ψ

0 0.02 0.04 0.06 0.08

Variance (   rs  (Ry/electron)
2
 )

-0.1090

-0.1085

-0.1080

-0.1075

-0.1070

E
ne

rg
y 

(R
y)

VMC JS+3B

VMC JS+BF

VMC JS+3B+BF

VMC JS

DMC JS

DMC JS+3B+BF

3D electron gas at a density rs=10

x 4

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



Why going beyond VMC?

. Dependence on wave function: What goes in, comes out!

. No automatic way of constructing wave function Ψ

Choices must be made about functional form (human time)

. Hard to ensure good error cancelation on energy differences

e.g. easier to construct good Ψ for closed than open shells

Can we remove wave function bias?



Projector Monte Carlo methods

. Construct an operator which inverts spectrum of H

. Use it to stochastically project the ground state of H

Diffusion Monte Carlo exp[−τ(H− ET)]

Green’s function Monte Carlo 1/(H− ET)

Power Monte Carlo ET −H



Diffusion Monte Carlo

Consider initial guess Ψ(0) and repeatedly apply projection operator

Ψ(n) = e−τ(H−ET)Ψ(n−1)

Expand Ψ(0) on the eigenstates Ψi with energies Ei of H

Ψ(n) = e−nτ(H−ET)Ψ(0) =
∑

i

Ψi 〈Ψ(0)|Ψi 〉e−nτ(Ei−ET)

and obtain in the limit of n→∞

lim
n→∞

Ψ(n) = Ψ0〈Ψ(0)|Ψ0〉e−nτ(E0−ET)

If we choose ET ≈ E0, we obtain lim
n→∞

Ψ(n) = Ψ0



How do we perform the projection?

Rewrite projection equation in integral form

Ψ(n)(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(n−1)(R, t)

where G (R′,R, τ) = 〈R′|e−τ(H−ET)|R〉

. Can we sample the wave function?

For the moment, assume we are dealing with bosons , so Ψ > 0

. Can we interpret G (R′,R, τ) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



VMC and DMC as power methods

VMC Distribution function is given ρ(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

Construct M which satisfies stationarity condition Mρ = ρ

→ ρ is eigenvector of M with eigenvalue 1

→ ρ is the dominant eigenvector ⇒ lim
n→∞

Mnρinitial = ρ

DMC Opposite procedure!

The matrix M is given → M = 〈R′|e−τ(H−ET)|R〉

We want to find the dominant eigenvector ρ = Ψ0



What can we say about the Green’s function?

G (R′,R, τ) = 〈R′|e−τ(H−ET)|R〉

G (R′,R, τ) satisfies the imaginary-time Schrödinger equation

(H− ET)G (R,R0, t) = −∂G (R,R0, t)

∂t

with G (R′,R, 0) = δ(R′ − R)



Can we interpret G (R′,R, τ) as a transition probability? (1)

H = T

Imaginary-time Schrödinger equation is a diffusion equation

−1

2
∇2G (R,R0, t) = −∂G (R,R0, t)

∂t

The Green’s function is given by a Gaussian

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]

Positive and can be sampled



Can we interpret G (R′,R, τ) as a transition probability? (2)

H = V

(V(R)− ET)G (R,R0, t) = −∂G (R,R0, t)

∂t
,

The Green’s function is given by

G (R′,R, τ) = exp [−τ (V(R)− ET)] δ(R− R′),

Positive but does not preserve the normalization

It is a factor by which we multiply the distribution Ψ(R, t)



H = T + V and a combination of diffusion and branching

Trotter’s theorem → e(A+B)τ = eAτeBτ +O(τ2)

〈R′|e−Hτ |R0〉 ≈ 〈R′|e−Tτe−Vτ |R0〉

=

∫
dR′′〈R′|e−Tτ |R′′〉〈R′′|e−Vτ |R0〉

= 〈R′|e−Tτ |R0〉e−V(R0)τ

The Green’s function in the short-time approximation to O(τ2) is

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]
exp [−τ (V(R)− ET)]

DMC results must be extrapolated at short time-steps (τ → 0)



Time-step extrapolation

Example: Energy of Li2 versus time-step τ

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk (1)

The basic DMC algorithm is rather simple:

1. Sample Ψ(0)(R) with the Metropolis algorithm

Generate M0 walkers R1, . . . ,RM0 (zeroth generation)

2. Diffuse each walker as R′ = R + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. For each walker, compute the factor

p = exp [−τ(V(R)− ET)]

Branch the walker with p the probability to survive

Continue →



Diffusion Monte Carlo as a branching random walk (2)

4. Branch the walker with p the probability to survive

. If p < 1, the walker survives with probablity p

. If p > 1, the walker continues and new walkers with the

same coordinates are created with probability p − 1

⇒ Number of copies of the current walker equal to int(p + η)

where η is a random number between (0,1)

5. Adjust ET so that population fluctuates around target M0

→ After many iterations, walkers distributed as Ψ0(R)



Diffusion and branching in a harmonic potential

Ψ(x)
0

V(x)

Walkers proliferate/die in regions of lower/higher potential than ET



Some comments on the simple DMC algorithm

. ET is adjusted to keep population stable

IF M(t) is the current and M0 the desired population

M(t + T ) = M(t) e−T (−δET) = M0 ⇒ δET =
1

T
ln

[
M0

M(t)

]
If Eest(t) is current best estimate of the ground state

ET(t + τ) = Eest(t) +
1

gτ
ln [M0/M(t)]

⇒ Feedback on ET introduces population control bias

. Symmetric branching exp[−τ(V(R) + V(R′))/2] starting from

e(A+B)τ = eAτ/2eBτeAτ/2 +O(τ3)



Problems with simple algorithm

The simple algorithm is inefficient and unstable

. Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction → Exploding population

. Branching factor grows with system size



Importance sampling

Start from integral equation

Ψ(n)(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(n−1)(R, t)

Multiply each side by trial Ψ and define f (n)(R) = Ψ(R)Ψ(n)(R)

f (n)(R′, t + τ) =

∫
dR G̃ (R′,R, τ)f (n−1)(R, t)

where the importance sampled Green’s function is

G̃ (R′,R, τ) = Ψ(R′)〈R′|e−τ(H−ET)|R〉/Ψ(R)

We obtain lim
n→∞

f (n)(R) = Ψ(R)Ψ0(R)



Importance sampled Green’s function

The importance sampled G̃ (R,R0, τ) satisfies

−1

2
∇2G̃ +∇ · [G̃ V(R)] + [EL(R)− ET] G̃ = −∂G̃

∂τ

with the quantum velocity V(R) =
∇Ψ(R)

Ψ(R)

We now have drift in addition to diffusion and branching terms

Trotter’s theorem ⇒ Consider them separately for small enough τ



The drift-branching components: Reminder

Diffusion term

−1

2
∇2G̃ (R,R0, t) = −∂G̃ (R,R0, t)

∂t

⇒ G̃ (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]

Branching term

(EL(R)− ET)G̃ (R,R0, t) = −∂G̃ (R,R0, t)

∂t

⇒ G̃ (R′,R, τ) = exp [−τ (EL(R)− ET)] δ(R− R′)



The drift-diffusion-branching Green’s function

−1

2
∇2G̃ +∇ · [G̃ V(R)] + [EL(R)− ET] G̃ = −∂G̃

∂τ

Drift term

Assume V(R) =
∇Ψ(R)

Ψ(R)
constant over the move (true as τ → 0)

The drift operator becomes V · ∇+∇ · V ≈ V · ∇ so that

V · ∇G̃ (R,R0, t) = −∂G̃ (R,R0, t)

∂t

with solution G̃ (R,R0, t) = δ(R− R0 − Vt)



The drift-diffusion-branching Green’s function

Drift-diffusion-branching short-time Green’s function is

G̃ (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R− τV(R))2

2τ

]
×

× exp
{
−τ [(EL(R) + EL(R′))/2− ET]

}
+O(τ2)

What is new in the drift-diffusion-branching expression?

. V(R) pushes walkers where Ψ is large

. EL(R) is better behaved than the potential V(R)

Cusp conditions ⇒ No divergences when particles approach

As Ψ→ Ψ0, EL → E0 and branching factor is smaller



DMC algorithm with importance sampling

1. Sample initial walkers from |Ψ(R)|2

2. Drift and diffuse the walkers as R′ = R + ξ + τV(R)

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(
−ξ2/2τ

)
3. Branching step as in the simple algorithm but with the factor

p = exp
{
−τ [(EL(R) + EL(R′))/2− ET]

}
4. Adjust the trial energy to keep the population stable

→ After many iterations, walkers distributed as Ψ(R)Ψ0(R)



An important and simple improvement

If Ψ = Ψ0, EL(R) = E0 → No branching term → Sample Ψ2

Due to time-step approximation, we only sample Ψ2 as τ → 0 !

Solution Introduce accept/reject step like in Metropolis algorithm

G̃ (R′,R, τ) ≈ N exp

[
−(R′ − R− V(R)τ)2

2τ

]
︸ ︷︷ ︸

T (R′,R,τ)

exp
[
−(EL(R) + EL(R′))

τ

2

]

Walker drifts, diffuses and the move is accepted with probability

p = min

{
1,
|Ψ(R′)|2 T (R,R′, τ)

|Ψ(R)|2 T (R′,R, τ)

}
→ Improved algorithm with smaller time-step error



Electrons are fermions!

We assumed that Ψ0 > 0 and that we are dealing with bosons

Fermions → Ψ is antisymmetric and changes sign!

How can we impose antisymmetry in simple DMC method?

Idea Rewrite initial distribution Ψ(0) as

Ψ(0) = Ψ
(0)
+ −Ψ

(0)
−

and evolve Ψ
(0)
+ and Ψ

(0)
− separately. Will this idea work?



Particle in a box and the fermionic problem

Ground state Ψ(0)(R)→ Ψ0(R)

Excited state Ψ1(R) changes sign!

Let us try our trick → Ψ(0)(R) = Ψ
(0)
+ (R)−Ψ

(0)
− (R)

Ψ
(0)
− (R),Ψ

(0)
+ (R)→ Ψ0(R)



Is a trick possible for DMC with importance sampling?

Does it help to work with f (R) = Ψ(R)Ψ0(R) ?

. Initial distribution Ψ(R)2 > 0 poses no problems. Good start!

. Iterate as f (n)(R′, t + τ) =

∫
dR G̃ (R′,R, τ)f (n−1)(R, t)

If move R→ R′ changes sign of Ψ so that Ψ(R′)/Ψ(R) < 0

⇒ G̃ (R′,R, τ) = Ψ(R′)〈R′|e−τ(H−ET)|R〉/Ψ(R) changes sign!

We have no luck ?!?

See next lecture by Lubos Mitas


