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Outline 

• Why auxiliary-field QMC? 
 A new approach: stochastic mean-field theory  

 Motivation:   reduce QMC error & increase predictive power;  

                           more “black-box” like LDA or HF?     

• Random walks in Slater determinant space  
 Understanding the sign (phase!) problem in this framework

 How to control it?    (approximate)

• What applications are possible?
 Molecules and solids: T=0K 

           plane-wave+Psps  or  Gaussians

 Models for strongly correlated systems: T =0 and T>0K



  

Recall sign problem:

 1 particle, first excited state: 

Introduction: why auxiliary-field methods?

+_

In real-space QMC, we need + and – walkers to cancel

....



  

Recall sign problem:

 1 particle, first excited state: 

Why auxiliary-field methods?

+_

Solid state or quantum chemistry?  basis

Explicit --- matrix x vec

No sign problem

ψ1

ψΝ

ψ2
.

.
…



  

Many particles?

A toy problem – trapped fermion atoms:

Why auxiliary-field methods?



  

What is the ground state when U=0 ?

Toy problem – trapped fermions

- Diagonalize H directly:

Put fermions in lowest levels:

 many-body wf:



  

What is the ground state when U=0 ?

Toy problem – trapped fermions

- Diagonalize H directly

- Alternatively, power method:



  

Toy problem – trapped fermions

:

 
Same as from direct diag.:

          



  

What is the ground state when U=0 ?

Toy problem – trapped fermions

- Diagonalize H directly

- Alternatively, power method:

• Applies to any non-interacting system

• Re-orthogonalizing the orbitals prevents fermions from 

        collapsing to the bosonic state 

     Eliminates ‘sign problem’ in non-interacting systems



  

Toy problem – trapped fermions



  

What is the ground state when U=0 ?

Toy problem – trapped fermions

- Diagonalize H directly

- Alternatively, power method:

What is the ground state, if we turn on U ? 

- Lanczos (scaling !)

- Can we still write            in one-body form?

     Yes, with Hubbard-Stratonivich transformation

  



  

Hubbard-stratonivich transformation

Introduction – why auxiliary-field methods?

  



  

Back to toy problem

What is the ground state, if we turn on U ? 

- With U, same as U=0, except for integral over x   Monte Carlo
  



  

Introduction to AF QMC



  

Introduction to AF QMC



  

Some “lingo” from mean field

• Electronic Hamiltonian:  (Born-Oppenheimer)

         
 

     can choose any single-particle basis

• An orbital:

• A Slater determinant:
MnO 



  

Summary: basic formalism of AF methods

To obtain ground state, use projection in imaginary-time: 

Electronic Hamiltonian:  (2nd quantization, given any 1-particle basis)

           

Hubbard-Strotonivich transf.

next 



  

AF methods: some background
• Applied in models in condensed matter, nuclear physics, 

(lattice QCD), ….
      Scalapino, Sugar, Hirsch, White et al.; Koonin;  Sorella, ….

 

basic idea:   Monte Carlo to do sum  (path integral)

• However, 
 sign problem for “simple” interactions (Hubbard)

 phase problem for realistic interaction

         Fahy & Hamann;  Baroni & Car;  Wilson & Gyorffy;  Baer et. al.; ….

• Reformulate --- 



  

Slater determinant random walk (preliminary I)

  



  

Slater determinant random walk (preliminary II)

  

HS transformation:

‘density’ decomposition



  

New AF QMC approach
Random walks in Slater determinant space:  

 

 

  

H-S transformation

Schematically:

next 

SZ, Carlson, Gubernatis

SZ, Krakauer

Exact so far 



  

Connection with DMC



  

Random walks in Slater determinant space



  

But … sign problem 

•           paths in Slater 
determinant space
 
• Suppose        is known; 
consider “hyper-node” line

• If path reaches hyper-node   

then its descendent paths collectively contribute 0

next 

E.g., in Hubbard:

• MC signal is exponentially small compared to noise

   In special cases (1/2 filling, or U<0), symmetry keeps paths to one side 
 no sign problem

    



  

How to control the sign problem? 

next 

keep only paths that never reach the node 

require

Zhang, Carlson, Gubernatis, ’97

Zhang, ‘00

Constrained path appr.

Trial wave function



  

Recovery from wrong trial w.f.

More predictive QMC: requires 
reducing reliance on trial wf 

2-D Hubbard model: finite-T
• U>0; 12% doping, 4x4

• Sign problem severe  <s>~10^-5

Compare with:
• high T: exact calculation with  sign 

problem 

• T=0K: exact diag.

 

wrong trial

AFM order



  

New AF QMC approach
Random walks in Slater determinant space:  

For general interaction, phase problem:

 

 

  

H-S transformation

Exponential noise

next 



  

Controlling the phase problem

Sketch of approximate solution:   

 

  

•  Modify propagator by “importance sampling”:  

    phase  degeneracy  (use trial wf)

• Project to one overall phase:

    break symmetry    (+/-  rotation) 

After:Before:



  

Controlling the phase problem 
--- more details

 

SZ & Krakauer



  

Controlling the phase problem: some comments

Subtleties:
• Constraint before importance sampling: 
           RehΨT|φi > 0,   
           then use RehΨT|φi as importance function  
         --- natural (!?), but does not work well
• Instead, project after “importance sampling”:

   use complex importance function hΨT|φi 

It helps to subtract “mean-field background” in HS:

If    is real, method reduces to constrained path MC

Two-dimensionality unique                                          - 
connection and difference(!) with fixed-phase

                                               

 

  



  

Discussion – new AF QMC  

 Pluses
• Sign problem is often found to be reduced  

       more robust and predictive methods

• Can do down-folded Hamiltonians (realistic models)

• Uses a basis --- walkers are Slater determinants

      formal connection to DFT --- k-pts, non-loc psp’s, PAW’s, ….

 Minuses
• Uses a basis --- finite basis-size error

• Mixed-estimator of total energy is not variational

• Not straightforward to include a Jastrow factor in trial w.f. (….)

 



  

Application:  molecular binding energies  

• All with single mean-field determinant as trial w.f. 

• “automated” post-HF or post-DFT

- O3, H2O2, C2, F2, Be2, …
- Si2, P2, S2, Cl2

- As2, Br2, Sb2

- TiO, MnO

3 types of calc’s:

- PW +psp:                 
- Gaussian/AE:
- Gaussian/sc-ECP:

Nval up to ~ 60



  

• ~ 100 systems (also IP, EA, aB, ω): eq. geom., moderate correlation
• Error < a few mHa (0.1 eV)
• Accuracy ~ CCSD(T)     (gold standard in chemistry, but N7)
• A QMC algorithm that complements DMC/GFMC
• reduced dependence on trial wf

• Larger systems? strong correlation? 

- O3, H2O2, C2, F2, Be2, …
- Si2, P2, S2, Cl2

- As2, Br2, Sb2

- TiO, MnO 3 types of calc’s:

- PW +psp:                 
- Gaussian/AE:
- Gaussian/sc-ECP:

Nval up to ~ 60

Molecular binding energies  



  

Large extended systems 

Cohesive energies:   (eV/atom)

 

 Na (preliminary): 
• metal
• new finite-size correction scheme 

 plane-wave + pseudopotential calculations

 DMC -- Needs et al (Cambridge group)



  

Benchmark: H2O bond breaking

Mimics increasing correlation effects:   
 (Quantum-chemistry-like calculation with Gaussian basis)

Dissoc. limit

R

H2O

Equilibrium

• CCSD(T) methods  
  (excellent at eq.)
   have problems

• The new method gives
  more uniform accuracy
  (error < 4 mHa) 

“bonding”                                           “insulating”



  

• UHF unbound. 
   Nonetheless, large  
     dependence on trial wf??

• No. Spin-contamination:

  - |ΨUHFi:  not eigenstate of S2

   - low-lying triplet in F2

• Simple fix – spin-projection:

  - Let |Ψ(0)i=|ΨRHFi
  - HS preserves spin symmetry
  - each walker determinant:        
                 
    free of contamination

F2 bond breaking

Mimics increasing correlation effects:   

Dissoc. limitEquilibrium

“bonding”                                           “insulating”

QMC/UHF:      

20mH error!



  

F2 bond breaking --- larger basis

How well does DFT do?   

Potential energy surface: (preliminary)
• LDA and GGA/PBE
    well-depths too deep  
  
• B3LYP well-depth excellent 

• “Shoulder” too steep in all 3

cc-pVTZ



  

C2 potential energy curve

  

 

….



  

C2 potential energy curve

 QMC with multi-determinant MCSCF trial wf  

  

 
1kcal/mol

0.2eV~30 det’s in trial wf

UHF trial wf

C2  total energy vs. bond length

Absolute error
      exact

(preliminary)



  

Metal-insulator transition in H-chain 

Stretching bonds in H50:                 

Symmetric: stretch each bond 

Asymmetric: stretch red 
                       bonds only

• Near-exact DMRG 
  (solid lines)
    Chan et. al., ’06

• QMC agrees with DMRG 
to 0.002 eV/electron

….

 metal

Insul. 

dimerized insul. 
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Lecture Notes: (missing recent developments – see 
papers below) 

• Shiwei Zhang, ``Constrained Path Monte Carlo For Fermions,'' in 
``Quantum Monte Carlo Methods in Physics and Chemistry,'' Ed.M. 
P. Nightingale and C. J. Umrigar, NATO ASI Series (Kluwer 
Academic Publishers, 1998).
(cond-mat/9909090: http://xxx.lanl.gov/abs/cond-mat/9909090v1  ) 

• Shiwei Zhang, ``Quantum Monte Carlo Methods for Strongly 
Correlated Electron Systems,'' in ``Theoretical Methods for Strongly 
Correlated Electrons,'' Ed. by D. Senechal, A.-M. Tremblay, and C. 
Bourbonnais, Springer-Verlag (2003).
(available at my website: 
http://www.physics.wm.edu/~shiwei/Preprint/Springer03.pdf  ) 

http://www.physics.wm.edu/%7Eshiwei/Preprint/Springer03.pdf
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What we have not covered (see references)

 Finite-T method (ref 8)

• Model systems 

• Connection with PIMC

 Ground state method for boson systems (Ref 10))

 Back-propagation to calculate observables other than the 
energy (refs 7, 10)

 Finite-size correction for solids
• Twist-averaging (k-point sampling)  (Ceperley) easy to do

• Two-body finite-size correction scheme (Kwee et al )

 Applications (Al-Saidi, Chang, Kwee, Purwanto, …)

• Van der waals, post-d atoms & molecules, TM molecules, electron affinities, 
more bond-breaking, trapped atoms, ….

     (my website)

 



  

Summary

 New AF QMC approach:   random walks in Slater det. space

• Potentially a method to systematically go beyond independent-particle methods 
while using much of its machinery

     --- superposition of independent-particle calculations

• Phaseless approximation ( constrained path if sign problem)

• Hybrid of real-space QMC and ‘mean-field’ methods

 Towards making QMC more robust, capable, black-box:
• Benchmarks in ~ 100 systems  (w/ increased correlation effects)

• Simple trial wfs 

       QMC ‘recovery’ ability important for strong correlation

• accuracy seems systematic

 Many opportunities for further development

 and applications!

 




