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Ahhh, pseudopotentials ...

Difficult subject ... why ?

-   highly technical, difficult 

-   often the most complicated parts of the codes

-   “only” an auxiliary concept, not really  fundamental   :-(

but 

-   it saves (b)millions  of hours of computer time

-   enables to do calculations/predictions which otherwise are impossible

-   forces you to learn/understand electronic structure a lot deeper
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Outline of this talk

-  Total energy as a function of Z (atomic number)

-  Core vs valence: energy and length scales

-  Idea of “pseudo-ion”: effective potential in the core + valence electrons 

-  Helps in DFT and basis set methods: smaller basis, less states

-  Helps in QMC: smaller total energies, significant gain in efficiency

-  PP (ECP in quantum chem.) norm-conserving construction

-  Evaluation of PP terms in VMC/QMC

-  Existing tables, accuracy, errors to watch

-  Ideas on many-body construction of PP 
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Density Functional Theory : 

                self-consitent loop

    

     Hartree-Fock:                                                                                                 min
 

                   self-consitent loop
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E tot=∫F tot [r ]d r

HF r1 , r2 , ...=Det [{i r j}]

r =∑
i

occup

i
2r 

[TkinVextVeff , DFT ]i=E ii

Reminder: one-particle electronic 
structure methods, DFT and HF

EHF= HF∣H∣HF =

[TkinVextVeff , HF { j}]i=E ii

Veff , HF=VCoulExch [{i }]



 

 Eigenvalues/energies of the one-particle levels  [ in a.u. ~ 27 eV ]

 Deep core qualitatively:                            n is the principal q. number
 Valence different, strongly modified by e-e interactions ~ a few eVs

   One-particle eigenvalues for carbon C (Z=6) and copper Cu (Z=29)
 
     2p       E_1s=   - 0.5           Valence         4s        E_4s =      - 0.2 
     2s       E_2s=   - 0.7                                  3d        E_3d =      - 0.5 
     1s       E_1s= - 11.0                                  3p        E_3p =      - 3.5
                                                                       3s        E_3s =      - 5.0 
                                     Core                          2p        E_2p =     -35. 
                                                                       2s        E_2s =     - 41.
                                                                       1s        E_1s =   - 392.    
 
  Note: different energy scales in core vs. valence
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Atom with nuclear charge Z:
energies of one-aprticle states

En=−Z2 /2 n2,
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Length scales of core vs valence 
electrons: carbon atom

        1s state                                                        

                             bonding region

                                                      
                                                                      2p
                                                        2s 
  
   

r_core
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Core vs valence electrons: copper 

atom, semicore states 3s,3p

   1s,2s                                                    

            3s                 

                                  bonding region

                                                                      4s
                                          3d 
  
   

r_core
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Core vs valence in bonds (C2): 
isosurfaces of molecular orbitals 

                                                                                                    valence
                                                                                              (hybridized, bond
1s core states (unchanged)                                                           formation)

          

            _

            +



Difficulties from cores for DFT (HF, etc):
large/huge basis and/or combined basis 

necessary
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 Clearly difficult to describe both core and valence:

  - core states/electrons are highly localized and have large energies:
    require very accurate description: nuclear cusp -> 

               - requires very localized description and basis

  - valence states have small energies, affected significantly due
    to bonding; states at or above Fermi level in solids can be even
    completely delocalized like a free-particle wave, very smooth 

               - calls for very smooth basis, plane wave almost ideal

core r ≈exp −Zr 



Difficulties from cores for DFT (and HF):
large/huge basis and/or combined basis 

necessary II
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   The best all-electron basis sets for solids based on combination of two 
    types of basis (FLAPW method): 
          - in spheres around atoms localized states: numerical radial meshes
          - between spheres plane waves 
          - matching/continuity of orbitals on sphere surfaces very 
            complicated 
          - perfectly working approach within DFT but could be expensive
          - development took a long time and was rather slow
 
  - ultimately, cores are inefficient if you are interested in valence
    properties (think about a heavy atom, most of the states are in core)

  - can we get rid of the core electrons completely ? 



Idea of core – valence partitioning
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  - core states/electrons appear to be rigid and do not affect valence
    electronic structure (bonds, excitations, band gaps, conductivity)
    much due to the different energy and length scales

  - get rid of the core states/electrons and keep only the valence ones
 
  - represent the core by an effective operator (cannot be a simple
    potential, must be angular momentum dependent because of different 
    number of core states in s, p, d angular momentum channels)

  - valence electrons feel a pseudopotential operator (instead of core e-)

Vps−ion=∑
l

vl r ∑
m

∣lm lm∣=∑
l=0

lmax

[vl r −vloc]∑
m

∣lm lm∣v loc r 



Dictionary and notations
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  In condensed matter physics: pseudopotentials            or PPs
  In quantum chemistry            : effective core potentials or ECPs

     

             - radial pseudopotential function for a given l-symmetry channel
             - outside the core will be just  - Z_eff/r = - (Z-Z_core)/r
                       
                        projection operator onto a given |lm>  state  -> nonlocal!!!

             -  number of different occupied channels -> number of nonlocal
                projection operators

vl r 

∣lm lm∣

Vps−ion=∑
l

vl r ∑
m

∣lm lm∣=∑
l=0

lmax

[vl r −v loc]∑
m

∣lm lm∣vloc r 

vloc r 

lmax



Nonlocality ? What does it mean ?
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  Remember the self-consistent loop/one-particle eigenfunction eq. ?

 

  In the simplest atomic case the nonlocality means that each symmetry
  channel has different ionic (pseudo)potential

   s

   
   p

   etc

[Tkin Vext=ion  Veff , HF { j}]i=E ii

[Tkin vs  Veff , HF { j}]s=Ess

[Tkin vp  Veff , HF { j}]p=Epp



One-particle construction of PP:
norm-conservation
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  How to construct such an operator so as  to represent the action
   of the core electrons as closely as possible to the true atom

  The most important is the charge: beyond certain r_core radius the 
  valence states should look identical like if the core electrons were present   
  
  - outside the r_core the charge will then be the same as 
    pseudo-charge,  valence eiegenvalues will be identical for both
    all-electron and pseudo atom

 - number of clever clever and elaborated schemes 
    (often used in condensed matter: Troullier-Martins construction)

-  more complicated schemes exist (enable to save even more) 
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             2s                                                                     2p 
             



One-particle construction of PP:
norm-conservation
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{cklm }

  -  beyond certain r_core the atom and each valence state should look
     exactly like if the core electrons were present
  - one-particle properties have to be conserved: charge outside
    r_core has to be the same as pseudo-charge
  

   
   

   
  -  optimize any variational parameters          ,     
     eg,  minimize the energy or local energy variance (Umrigar et al,'88)   

R=r1 , r2 , ... , rN

                       2s state                                                  2p (both similar)
                       (pseudo orbital is nodeless:
                        becomes the ground state) 

 
       

        r_core



Example of PPs for C atom (Lester et al, JCP 
2003)
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Example of PPs for C atom
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                                                 r_core           bonding



Norm conservation conditions not
very constraining inside the core:

large flexibility in construction
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 - many of the PPs (ie, ECPs in quantum chemistry) can have singularities
  

 - > not fundamental, the reason is in gaussian basis sets used in 
       quantum chemistry, these are rather flexible to describe these,
       can be equally accurate as others

 - in condensed matter physics all PPs are smooth and bounded since
   the key motivation was/is to simplify the basis and use only plane
   waves

 - smoothness of PP helps in QMC, too ( as we will see)

   
   

vl r =const / r2 for r0, vlocr =−Zeff / r for r0



Norm conservation conditions not
very constraining inside the core:

large flexibility in construction
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      - figure of SBKs vloc r =−Zeff / r for r0



PPs in QMC: perhaps even more important  
for efficiency of the method -> energy 

fluctuations!
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   Energy of core states: scales as Z^2

   Energy of valence states: basically constant ~ 1- 10 eV (0.01 – 0.5 au)

   Variance of energy in QMC is always determined by the largest
    energy scale present!    Very crude estimation:

   
  Efficiency of sampling of valence properties (bond energies, gaps
   etc)  for heavy atoms therefore can be very inefficient

  In reality:   for He atom                            for Cu atom 
  slowdown by a factor of ~ 500  (for heavier atoms: impractical)

   Huge hit on efficiency: while we are interested in valence properties
   all the time would be spent on sampling the fluctuations in the core   

2= VMC∣H−EVMC
2∣VMC ≈ Z4

2≈0.2 2≈100



PPs in VMC: straightforward but numerically 
involved
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                         projection operators mean that the pseudopotential 
       operator is nonlocal (ie, has off-diagonal matrix elements)
   - its action on an arbitrary trial wave function for many-particle system
     is a sum over electrons and ions (ie, sum of one-particle operators) 

 

 
   The key numerical task is the integral over the spatial angle/sphere surface 
   Done by using numerical quadratures of N_k points and weights on
   a sphere surface

 
 

VpsR =∑
iI

VpsiIR

J=∫4
f d=∑

k

wk f k

VpsiIR=∑
lm

vl r iIY lm iI∫4
Y∗lm  'iIr1 , ... , r 'iI , ... , rNd 'iI=

=∑
l

2 l1
4

vl r iI∫4
P l [cos 'iI]r1 , ... , r 'iI , ... , rNd 'iI

∣lm lm∣

I r Ii i



PPs in VMC: elimination of the numerical 
bias 
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    Quadratures are such that they integrate products of spherical
    harmonics up to a given l_max exactly, eg,  N_k=12  l_max=5

    Quadratures by V. Lebedev from a russian math journal (available in 
    original at UI Urbana-Champaign library :-) )

   - numerical bias from the integration: to the leading order eliminated by
     random rotations of the  quadrature points on the sphere (Fahy et al, '88) 
   
 

 

 

 

k
rand=R axisrand ,randk



PPs in QMC: some speed-up improvements
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   -  high accuracy quadratures help because the nonlocal part
       can become the dominant part of the calculations

   -  typically it is about 50- 70% of the computational 
      cost (costly but still much  better  than sampling core states)

   - make sense to minimize the computational cost further:

        - improve the fluctuations of energy inside the core by smoothing 
          out the PPs

        - shorten the radial range (r_core) of the PPs
     
        - sample the exponentially small tails of PPs stochastically
          (ie, only occasionally) instead of each time

     Most of these implemented in good QMC codes and PPs

 

 

 The key numerical task is the integral over the spatial angle 
  (surface of a sphere) of the  Y_lm functions.

 Done by using numerical quadratures for sphere surface

 
 which integrateptimize any variational parameters          ,     
     eg,  minimize the energy or local energy variance (Umrigar et al,'88)   



Do PP really work and how accurate are 
they 
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 If you are careful the pseudopotentials work (and save millions of
 hours of computational time)

- advantages: 
       - the key is the lower total energy -> smaller fluctuations
       - smaller number of states/electrons to cary along
       - scalar relativistic effects which are important beyond the 
         third-row can be automatically included (by construction);
       - formalism can be expanded to spin-orbit dependent PPs 

- disadvantages:
       - always watch how accurate PP is
       - might not work well is some cases: you have to watch whether
         the core does not affect the valence propertie in special
         cases, eg at high pressures 
       - necessary to evaluate numerically the action of projectors
          (dominant cost in QMC calculation)                  
       



Comparison efficiency/accuracy for Fe atom
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Fe  atom ->      [Ne] 3s^23p^63d^64s^2= [Ar] 3d^64s^2 

                                      all-electron            [Ne]-core               [Ar]-core

E_HF [au]                      -1262.444              -123.114                 -21.387

E_VMC[au]                   -1263.20(2)            -123.708(2)             -21.660(1)

          [au]                        ~ 50                          1.5                        0.16

efficiency =                       0.02                         2.1                        125

valence errors                    0                         < 0.1 eV                ~ 0.5 eV !!!

Ne-core PPs represent the best compromise for QMC: high accuracy,
acceptable efficiency 

VMC
2

1

2 Tdecorr



Well-known limits of PPs 
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PPs are an “artificial” construction, Nature knowns nothing about
it, it is an auxiliary concept which helps to make many calculations 
practical and you should  to worry about accuracy: the key point is
when ? 

- when the core is “fat”, polarizable and exhibit core relaxation effects:
   example: 
  Na =  [Ne core] + single 3s electron  is not a good representation of 
  sodium (you need additional operators to capture these effects) or
  take more electrons to the valence space

- in general, high pressures (increase in core-valence overlaps)

- changes in local magnetic moments from high to low (eg MnO) 
  in combination with methods used 



MnO at high pressures B1 to B8 transition 
(J. Kolorenc, NCSU)     
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    Comparison between
    all-electron (red) vs.
    PP (blue) calculations 
    using DFT/GGA(PBE) 

   all-electron transition
   pressure: 43 GPa

   PP transition pressure:
                    67 GPa
    
    mainly DFTproblem,
    read more about it in
    cond-mat/0608101
    (to appear in PRB) 
    



 The basic input forms
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Inputs and forms:

a) gaussian times polynomial expansions

    most of quantum chemistry calculations and codes
    (bodes well with gaussian basis sets)

b) generated numerically as radial meshes with agreed upon formats

    many DFT codes, especially plane waves (qbox, qespresso, pwscf)

    also generated by OPIUM utility 

   

vl r =∑
i

ci r
n i exp −i r

2



Pseudopotentials in condensed
matter physics
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  Some existing tables:

   Bachelet Hamman Schlutter (PRB mid 80s) /DFT based, whole periodic
   table 

   Troullier-Martins/ DFT with better convergence in plane-wave cut off 

    Vanderbilt/DFT/”ultrasoft” additional technical improvements so that
    plane waves can be used 

   Easy to find: type the last name in Google Scholar

  Alternative: existing codes to generate these, eg, OPIUM



Existing tables in quantum chemistry
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  Tables in quantum chemistry find at the gaussian basis set
   web page (at PNL)

   www.emsl.pnl.gov/forms/basisform.html

  - good standard for the first two rows / based on Hartree-Fock
    SBKJC (Stevens-Basch-Krauss)   
 
   basically whole periodic table by the Stuttgart group/Dirac-Fock

    Stuttgart RLC (relativistic large core)
    Stuttgart RSC (relativistic small core)

  - transition metals and rare earth heavy atoms 

 New generation  of  these PPs might be coming (ask Claudia)
    



Pseudopotentials in DFT and QMC: some 
useful papers and reviews
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Review of pseudopotentials in DFT: W. Pickett,  Comput.
Physics Reports (Google Scholar)

L. Mitas, E. L. Shirley, D.M. Ceperley, J. Chem. Phys., Nonlocal
pseudopotentials and quantum Monte Carlo,  95, 3467 (1991)
 

  

  
B.L. Hammond, W.A. Lester, Jr., and P.J. Reynolds, Monte Carlo
Methods in ab initio quantum chemistry, World Scientific, Singapore, 
1994

M. Foulkes, L. Mitas, R. Needs, G. Rajagopal, Quantum Monte Carlo 
for Solids,  Rev. Mod. Phys. 73, pp. 33-83 (2001)

D. M. Ceperley and L. Mitas, Quantum Monte Carlo methods in 
chemistry, Adv. Chem. Phys. Vol. XCIII, pp. 1-38, Ed. By I. Prigogine 
and S. A. Rice, Wiley, New York, 1996.



More accurate and advanced PP 
constructions (many-body ideas) 
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 1) Stuttgart group (especially Michael Dolg, U. Bonn now)

    Use one-particle construction (eg, norm conservation) 
    as a starting point.
    
    Improve the PPs using correlated wavefunction methods 
    (Configuration Interaction, Coupled Cluster)
    in such a way that PPs reproduce energy differences between
    various atomic states as closely as possible, eg, 
        -  excited states
        -  positively ionized states
        -  negatively ionized states, etc

   Some fits done to dozens of states

 



More accurate and advanced PP 
constructions (many-body ideas) II 
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 2) Acioli and Ceperley generalized the one-particle construction into
     a many-body one as follows. Instead of enforcing agreement between 
     original and pseudo orbital they proposed to use agreement between 
     the one-particle density matrix for all r>r_core. 

      Assume we can calculate very accurate atomic wavefunction
   

    Since the density  matrix can be diagonalized in the so-called natural 
    orbitals that effectively leads to fix agreement of natural orbitals for 
    all-electron and pseudo cases.  
   Tested on the first row atoms, quite laborious method.

1r , r '=∫r , r2, ... , rNr ' , r2, ... , rNdr2. .. drN

all
1r , r '=ps

1r , r ' r , r 'rcore

R 



Doing calculations with PPs: a few basic 
recommendations    
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 -   use appropriate PP 
         - test or  find the tests how accurate they are
         - be sure to use accurate basis sets
         - test whether PP does not affect your predictions

 - if you find that PP is not good enough:

      - take more electrons from the core to the valence  space
      - construct new PP
      - test vs all-electron at least for representative cases!
      - point out the differences or errors which you find so that
        others are aware of it

- there is no end to improvement of PP, each generation builds its own 
  (note the aptly named code OPIUM) 



 Notes to add/fix
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 - all states for Cu

- two figes with C orbs

- subindexes

 
 


