Outline of Lecture
-
Overview and History
- Origin/Philosophy
- Main Approaches
- Commercial/Public Codes
-
Methodological Considerations
- QM Description (semiempirical vs ab initio)
- MM Description (charges vs. multipoles, polarization, short-range
interactions)
- Covalent Boundary
- Mechanical vs. Electrostatic Coupling
- Vibrational Effects/Dynamical Issues
- Bulk Solvation
-
Applications
- Main Areas
- Specific case studies: Biochemistry
- Specific case studies: Material Science
- Outlook/Future Directions
|
|
Background Articles
|
|
"The
Effective Fragment Potential Method: A QM-based Approach to Modeling
Environmental Effects in Chemistry", M. S. Gordon, M. A. Freitag,
P. Bandyopadhyay, J. H. Jensen, V. Kairys, and W. J. Stevens, J.
Phys. Chem. A 105 293-307 (2001).
|
|
"A
mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale
modeling of chemistry in protein environments", R. B. Murphy,
D. M. Philipp, R. A. Friesner, J. Comp. Chem. 21 1442-1457
(2000). |
|
"Hybrid potentials for large molecular
systems", P. Amara and M. J. Field, Computational Molecular Biology
Series title: Theoretical Computational Chemistry (J. Leszczynski,
Ed) vol 8. pg 1-33 (1999) (Amsterdam; New York: Elsevier). |
Lecture 1
|
Quantum
Mechanics / Molecular Mechanics Methods |
|
Lecture
Notes - (468 KB PDF) |
|